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CHAPTER 1

INTRODUCTION

1.1 Background

Recently much work has been directed towards developing
constitutive models to represent the complex load-deformation behavior
of soils. The models developed to date have primarily been for the
special cases of dry and completely saturated soils. The use of these
constitutive models in representing the behavior of partly saturated

soils has resulted in inaccurate predictions of scil response. It is

N2 27 R T P R 5 e

the intent of this research to formulate a constitutive model

describing the behavior of partly saturated soils.

T 1‘

There are essentially two approaches which have been used by those
attempting to develop constitutive laws for soils. The first approach
is termed pnenomenological modeling. Phenomenological models may be
defined as those concerned with describing material behavior on the
size scale of the experiment. For soils, thousands to millions of
soil grains and pores would be included in a model representation of
this type. Phenomenological methods or tneories include emprical
curve fitting, elastic theories, elastic-plastic theories, and visco-
elastic theories. These methods and continuum theories are concerned
with describing the overall observable behavior of the soil mass.

They are not concerned with describing the actual mechanisms causing

deformation, which act on the level of tne grains and pores which
comprise tne soil mass. The second type of approach is termed
micromechanical modeling. This approach attempts to derive

constitutive laws by considering the deformation mechanisms acting on

Jor X PRS
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2 T

¢ a very small but representative sample of the material. For soils, a

' E micromechanical model description might include one to hundreds of
P,
! grains and pores in the model description.
(tl
b 5?
) The primary problem with constitutive models representing soils,

is a failure to describe all aspects of their load-deformation

- -
. dn W
-

% behavior. While a model may give reasonable predictions under one set

of input, it may fail to predict the soil resporse under another set

S -~
NI

-
%

of input. With the present knowledge it appears that a constitutive

P ]
27

* model representing all aspects of soil behavior may not be obtainable.
:':E & This is due partly to a lack of understanding of the mechanisms

S causing soil deformation and partly due to the mathematical

ﬁal §§ complexities one may encounter when modeling soils. A micromechanical
X >

Zé approacn to the constitutive modeling of soils may provide a better

y ‘ means to understand the soil load-deformation mechanisms.

1.2 Scope of Work

The purpose of the research studies contained in this report is to

develop a constitutive model representing the load-deformation

M ek

W behavior of soils. The following types of investigations are

.
o
XA

contained in this report:
a) Review of the available literature on previously developed
constitutive models describing the load-deformation behavior

of soils.

& =2

I b) Development of a constitutive model to represent the response

=
'<\" ~ 4

of partly saturated soils using micromechanics, under

idealized conditions.

Yool
s

o 1.3 Method of Approach and Organization

‘N The studies undertaken to achieve this objective are deszribed in
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the subsequent chapters.

Chapter 2 contains a brief description of experimentally observed
load~response behavior of soils and review of previously developed
constitutive models describing this behavior.

Chapter 3 contains the solution to the problem of an elastic
sphere in contact with a number of neighboring elastic spheres.

Chapter 4 contains the development of the effective moduli to
describe the elastic behavior of a number of spheres in contact while
surrounded by a liquid matrix phase.

Chapter 5 contains the extension of the work described in the
previous chapter to three-phase systems.

Chapter 6 presents conclusions and recommendations.

.
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: , ' CHAPTER 2

TR

PREVIOUS WORK

§ ks 2.1 Load-Deformation Benavior of Solls

R

f Wnen a soil mass is subjected Lo any arbitrary set of surface tractions,
E; {‘! the result 1s a volume and shear deformation of the soil mass. The resulting
? Eg displacement 4and stress fleids within the soil mass depend on a number of

'y

: variebles., Tnese variables include the type of loads applied to the soil

5‘ EE mass, tne stress history of tne soll mass and the chemical, and the physical
L ‘ properties of the soil mass.

N

~; ' Experimental observations of the response of a soil mass to various

s" g appliied ioads nave provided a great deal of information concerning the load—
AL

? ‘ deformation behavior of soils. Tnis information provided by experimental work
X ii wlll be briefly discussed in the next four subsections.

a 2.1.1 Soil Behavior During Initial or First Loading

\ o

"""

The term 1nitial or first loading will be understooda to refer to a state

of stress, occurring within the soil mass, which the soil is experiencing for

-

» the first time., In Fig. 2.1, the initial loading curves correspond to those
U . .
K
h :x lying beteeen points 1 and 2, and points 3 and 4. The arrows shown in Fig.
o . . .
)
> 2.1 indicate the load path taken.
S |
3? . The amount of volume deformation resulting from an increase in stress will
4
L)
z qb depend on the relative density of the soil mass. The relative density relates
2 [}
AN
q tne actual void ratio of tne soil to the maximum and minimum void ratios
n .,
k b possible within the soil mass.
WA A .l
.§ 2.1.2 3Soil Benavior During Unloading and Reioading
5 r 4 .
¢
by’
L, Wwhen an applied load is removed from a soil mass, rebound will normally
p |
B
i
Al &
e

WO () ] (LI 0
Yty ’,a;‘. ’s‘w‘n’.‘c“’ atbathye? e l"’i’ ‘@"«":'«‘.'n' e '\'.'4', 's‘ ‘A'. '4'&,.‘.}0!.30 ‘.' ‘l'"‘" .
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occur resulting in an increase 1n soil volume. The stress path taken by the
3011 ©mass during unloading will typically be different from that taken during
initial loading. A typlcal unloading curve is shown in Fig. 2.1 as that
portion of the curve lying between points 2 and 5. An important fact in Fig.
2.1 is that tne stress occurring within the soil mass is not a single—=valued
function of strain. Instead, the stress at a particular value of strain may
be multi-valued.

The term relcoading refers to the addition of a load to the soil mass wnich
results in a stress state previously experienced by the soil. A typical
reload curve 1s shown in Fig. 2.1 as that portion of tne curve connecting
points 5 ana 3. When a soll experiences an unload-reload cycle, there will,
in general, be a volume change assoclated with this cycle. As shown in Fig.
2.1, the unload-reload cycle begins at point 2 and ends at point 3. The
volume change which occurs during this cycle is proportional to the difference
in the velumetric strains corresponding to points 5 and 3 When the reload
path reaches point 3 of Fig. 2.1, continued loading will follow a path similar
to that for initial loaaing.

There will be an energy loss associated with tne unload-reload cycle as
apparent from the hystersis loop shown in Fig. 2.1. This demonstrates the
effect of damping present within a soil mass.

2.1.3 Behavior of Soils in Simple Shear

The term simple shear means that the soil is loaded in pure shear. The
behavior of soils when loaded in simplie shear wlill depend on the initial
relatlve adensity of the soil. When a soil of an initially low relative
density 1S Loaded in simple snear, a densification of the soil will result.
This decrease in volume is due to particle rearrangement, ylelding and

fracture. Densification continues with increased loading until a minimum void

‘*

"' ,-— - AP o A "‘_ SR A T '..4- . .{- 0 o ',"\7 - . Y b '}l' '.‘
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ratio 1s reached. Continued loading will cause the soili to fail. A dilation
of the soil mass 1s usually associated with this failure. The dilation of tne
3011 mass occurs because, in order for the so0il to fall, grains must ride over
one another. Soils which exhibit such behavior are loose granular materlals
and normaily consclidated clays. For soils of initially high relative
density, little densification occurs from the application of a simple snear
loading. Rather, a dilation of the soil mass will occur since tne vold ratio
of the so1l mass is already near its minimum value. SoOl11ls which Snow~ tnis
type of behavior are dense sands and overconsolidatea clays. Typlca. 3tress-
strain curves for different soils loaded in pure shear are shown 1n Fig. <.:z.

2.1.4 Soil Deformation in Time

For some soils, the total deformation resulting from the application of a
load will not occur instantaneously, but over a period of time. This type of
deformation is referred Lo as consolidation and occurs in silts and clays.
Theories which predict the amount and rate of consolidation usually consider
tne soll to be saturated. The load is initiaily transferred to the liquid
phase present in the pores of the soil mass. This results In an increase in
the pore pressure so that steady=state conditions 1in the pores no longer
ex1ist. Over a period of time, liquid will flow from the pores, thus causing a
dissipation of the pore pressures. This continues until hydrostatic pressure
is achieved. As the pressure is dissipated from the pores, the load will be
transferred to the soii grains resulting in consolidation.of the soll mass.
The permeability of the soil controls the rate at which consolidation takes
place. This behavior is termed primary consolidation and 1s shown 1in Fig.
2.3.

Secondary consolidation or creep 1s also shown in Fig. 2.3. Secondary

consolidation i3 defined as tne deformation which takes place after the pore

- 1.’1"".;~' “:; \llqlf LY. O
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?: Y pressures have reacned steady state conditions. Although tneories exist for

3 - ‘ ,

h the preaiction of secondary consolidation, none have yet found general

.

’ ! acceptance.

« T

% 2.2 Constitutive Models Representing Soil Behavior

"

,z L Ovei the last two decades much work nas been done to develop constitutlve

A

v (] models to represent the load—deformation behavior of soils. Thus far, most of
&,

b 'l.. N .

4 these models have been used to represent the behavior of dry or completely

saturated soils. When these models have been used to predict the behavior of

. part.y saturdled solis, they have ylelded poor results for the soil response.

2

However, tnese models are worthy of some attention, since they provide insight

LO the approaches whicn nave been taken to develop constitutive laws

e
=

q describing soll benavior,

j S

The procedure of gevelioplng a constitutive model for soils has followed

Paaks

two approaches. These two approaches are termed phenomenological and

L

micromechanical modeling. The following sections of this report will discuss

the soil models obtained from these two approaches.

2.2.1 Phenomenological Models

I X
v
’
Jalas

Phenomenological models are those concerned with describing behavior on

L
.
*®

of the scale of tne experiment. These models treat soil as a continuum including

R <
2%

thousands to millions of soil grains and pores in the model representation.

,’ Phenomenological methods or theories include mathematical curve fitting,

( .

4, G

0 v .
z‘ elasticity theory, plasticity theory and viscow=elasticity theory. The soil
i

.“ 7" . N

ﬁ' ; constitutive models developed from these methods or theories are discussed
LA

: below in aetail.

SR

S )( - ]

2 2.2.1.1 Empirical Models

# o

:ﬂ E? A number of models representing soll benavior have been developed using
n empirical curve fitting methods. This approach entails making a mathematical
) .

S

IR

D)

y
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11

fit to experimental data. In this manner, the response of the soll due to
some specific input may be predicted. Herein, the 1input and the response are
tnose measured experimentaily.

Many researchers have taken the empirical approach to modeling the
pressure=volume behavior of soils. Herrmann (1971) took such an approach in
introducing the "P-a" description. In his model, the pressure was assumed to
be a function of the specific volume, internal energy and the porosity of the

$01l. The relationship Herrmann proposed is

s .
P=7F (0.—’ us) (2.]3)
Vs
a = = (2.1b)
m
Wwhere vy T specific volume

u_ = specific internal energy

v_ = specific volume of the matrix material
In Egs. (2.1), the function f was assumed to be 1dentical to that which
relates pressure and volume for a mass composed entirely of matrix material.

Carrol and Hoitv (1972) proposed that 1t was more reasonable to represent the

pressure-=volume relationship for soils by

v

1 3
P = a f ((—1—-’ us) (2.2)

If tne pressure volume relationship for the matrix material is known, the

problem reduces to determining the function

a=q (P) (2.3)

The determination of the porosity provides the pressure=volume relationsnip
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12
for the compiete material, This modei used the Mie~Gruneisen equation of

state (see Carrol and Holt, 1972) to describe tne function f. This equation

13
P=P.+ (4 -u )~;& (2.4)

where P = pressure

0
u

a reference pressure

j -
]

specific internal energy

[
]

a reference specific energy

<
[}

specif:ic volume
T = Gruneisen ratio

The Gruneisen ratio is given by

Tg = Vs (aT)Cv (2.5)

where T = temperature

Cv = gpecific heat at constant volume
A polynominal fit was then used to describe the function g. For situations
Wwhere the variation in internal energy is less important, Butkovien (1973)
developed a model relating the porosity to the applied pressure. The

expression ne obtained 1s

1
PO Inl

1 0 C -
& = Pe (2.0)
L)
o]
where ao = 1nitial value of

Pe = the pressure required for the onset of pore closure

IOUOROUGUOUOA I RIEA AU OUNAM O q ANERITWARING MW DA O DS N OSDDRNNY
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PC = the pressure requlred for pressures within the range
The Eq. (2.4) 1s applicable for pressures witnin the range between Pe and PC.

For pressures less than Pe’ the pressure-=volume relationship for the matrix

1y &5 P

material 1s used. In Butkovien's work, the pressure-=volume relationship for

the matrix materiai was assumed to be given by soil unloading data. A

. . e~ e

polynomial fit to initial loading data was used to determine the pressure

S8 I

volume relationshlp for pressures lying between Pe and Pc. Otner empirical

models describing the pressure-volume relationship of soils have been

2o 4

N o - s A e

deveiroped, butl tnhe models cited above are representative of this work.

%

Qther models have been developed which made mathematical fits to deviator

-
3

Stress—=strain data. The simplest model of this type is obtained by

2N

o approximating deviator stress versus strain data by a series of piecewise

\l

(R linear curves. This type of approximation is shown in Fig. 2.4. More

.

sophisticated mathematical fits such as hyperbolas and cubic splices have been

A

used to relate tne deviator stress to the strain data. The most popular of

these methods is the hyperbolic stress-~strain model developed by Duncan and

~
¢
[ AF 9

P 4

K Chang (1970). This model is based on the finding that the deviator stress

versus strain curves for a number of soils can be approximated by hyperbolas

Qe

§ like the one shown in Fig. 2.5. This hyperbola may be represented by

N

N 2

N

\ €

L (o, = 03) 3 < (2.7)

' : E. ' (o a,)

- i 17 930t

) }: where g, 7 g, = deviator stress

13 h‘ ] 3

! ' € = strain

R &

o .

- E.l = lnitlial tangent modulus

. ET The Eq. (2.7) may be transformed so that it will plot as a straight line.
L)

' This transformed equation is

.

» \'

‘A

L)

b
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2
-
!
1
’ £ € ;.
- (o) = 03) - E: * (o = 03)yL7 (2.6) ;
A plot of Eq. (2.8) is shown in Fig. 2.6. Other empirical relations are used E
‘é tc account for the variation 1n soil strength with confining pressure and ;
modulus vzlues for loading and unloading. Because of these relationships, the T
S_ hyperbolic model requires a number of parameters for 1ts use. The hypobolic f
. model also fails to realistically model actual soil behavior at or near :
A failure,. ;
¥y In general, there are some basic problems associated with soil models '}
[}
) developed from empirical models. First, an empirical model cannot be expected ;
3 to provide reasonable predictions of soil behavior when the soil and site !
.. conditions being modeled deviate greatly from those used to calibrate the 2
¢ model. Secona, this type of model cannot pe expected to provide any insight :
b to the actual pnysical deformation mechanisms acting within the soil mass. '
Despite these sncrtcomings empilrical models are frequently used due to their ;
r ,
) simplicity. i
. "
2.2.1.2 Nonlinear Elastic Models :
Some models representing soll behavior have been developed using nonlinear :
L]
" elasticity theories. However, these theories have not found widespread use :
since tneir predictions of unload behavior dc¢ not represent actual soil t
3 4 behavior., For cases wnere initial loading 1s of 1interest, nonlinear S
: elasticity theories may provide reasonable predictions of soil response. E
i Hyperelastic constitutlve laws have been used Lo represent soil behavior. .
These models use constltutive laws obtained by the differentiation of a strain :
energy function. Different orders of nyperelastic models are ohrtas.aed by ?
]
- retaining tne higher order derivatives obtained from the straln energy '
» function. Hyperelastic soll models may be used L0 represent initi:a' loading. 3
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Truesdale nas proposea a rate theory which states that the rate of change

<

.
-

of stress is a function of the rate of change of strain. Tnhis 1S known as tne

- - v,
- ot

<

hypoelastic formulation. At present, this formulation has not been used in

representing the load~deformation behavior of soils.

=

2.2.1.3 Elastic-Plastic Models

Elastic-plastic theory had been widely used in so1l modeling. Recently,

55

many constitutive models for soils have been presented which use this theory.

=5

In general, this type of model assumed a yleld criterion of the form

TN, e e w e e T e R A e e

~
o3 (T e P
P 3 F 1 %1y X) =0 (2.9)
R)
l. v
SN
g
L where T = stress tensor
’ ij
’_\
A - '
R eij plastic strain tensor
X , X = Work hardening parameter
’ , . . P )
" ii When the above equation is not satisfied (F (Tij'eij , X) < 0) the material
§
K ~ 1s said to behave elastically. When Eq. (2.9) is satisfied, the behavior is
§ b said to be elastic-plastic. Furtner deformation beyond the point where Eq.

(2.9) is satisfled occurs at a combination of elastlic and plastic strains,

prescribed by an assumed flow rule. The yleld surface 1s typically descrilbead

T v =

j in stress space as shown in Fig. 2.7. For a known stress polnt inside this
: Ey region, tne strains are found using elastic conatitutive laws. When the

»
: ) stress point lies on the yield surface, the total strain 1s a combination of
I
o+ sg eiastic and plastic strailns. For a stress point lying on the yield surface,
; X further loading may cause the surface to expand, translate or both, according
E bﬁ to the work-nardening rule assumed. Unloading may be elastlc or elastic~
; E§ plastic. An example of the movement of the yleld surface in the principai
: .stress space is shown in Fig. 2.3. The material is initially unstressea at
b

[y
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b S
e

4 . pornt O and is then loaded to point 1., The benavior of the material when

-
rl

/]

S
J—

(')
3

. following this load path is elastie, since it lles withln tne initial yield

surface, At point 1, the stress point lies on the yield surface such that

-

f further loading will result in behavior that may be elastic-plastic or
R, ;ﬁ elastic, depending on the stress path taken. As the material is loaded along
:. N -

the stress path connecting points 1 and 2 in Fig. 2.8, the material will

_‘_
i

exhlblit elasticmplastic behavior. The stress point along this path remains on

the yield surface, with the yield surface expanding, translating or both. In

e m
’E.;“-

; Fig. 2.8, the tensor alj would be non-~zero and no expansion of the yield

g %E surface would occur. Combined hardening, in which the yield surface may

¥ .

3 . translate as well as expand, is shown in Fig. 2.8. Further loading of the

. Bg material from point 2 to point 3 of Fig. 2.8 will result 1n elastic behavior

because the loau path taken lies within the new yield surface. Continued

w
-Jd
loading from point 3 will result in elastic or elastic—plastic behavior,

g a depending on the loaa path taken.
+9 .
18 . Schofield ana Wroth (1968) developed an elastic-plastic soil model, known
» ,. .
I
:e P as the "cam=clay" model which accounts for the volume deformation and strain=
i
e
- l! hardening of soils. Tne basis of their model is an incremental flow rule
ol
) which balances the irreversible work occurring during deformation against a
" -
'
:: g mecnanism for the frictional loss. Their flow rule is given by
P g} P
& o2 Q= (Ats) =P ( ) = uP (Ats) (2.10)
a _
b Y
a %g wnere V = volume
\ P = pressure

.3

v Q = measure of shear stress
A ?? ty = measure of shear strain
» u = friction parameter
-". .
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Here the superscript denotes plastic or elastic portions of the quantltles

indicated., The elastic volume deformation during hydrostatic deformation is

™, L B

"|:
;L glven by
W
o v ap ¢ uP
O\ . A(V— ==AP A(v)=.—AP— (2.11)
‘e m .
;. &z wnere V., = volume of matrix material
N
(:’
0 A = a constant

-
T
E‘ Si

a4

AS yielding 1s occurring, the total volume change 1s given by

g

N " APV AP : )

SR 8y ==BF A (P =B85 (2.12)

i m m .

WY

‘ £ where B = a constant

A"

K- Ny Tne assumption of an associated flow rule gives the following equation for the
L

>

yield surface:

-
e
. -
=

‘ Q px
tg¥ = . —_—
..:l uP in P (2',13)
’.7 Yy
)
.:. b
W In Eq. (2.13) P* is the intercept of the yield surface with the P axis as

-

shown 1n Fig. 2.9. An important assumption of the "cammclay" model is that

-
»

:{ the plastic volume deformation for non=hydrostatic stress states is the same
; o
' ™ .
'50 ﬁ& as for hydrostatic states but with the P replaced by P*¥, Thus, the plastic
3 .
;! v volume deformation 1s given by
1
p
7 v v P AP#*
R % My = - (B - A) SR (2.14)
o’ !
." t’l.
o ¢§ The Egs. (2.10), (2.11), and (2.12) form a system of equations from which
(% .

strain increments may be determined from stress increments, or vice-versa.

~
res

4 The constants B and A are determined experimentally. Hydrostatic loadlng
)
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corresponds to a movement along the P axis shown in Fig. 2.9. when yielding
occurs, a non-nydroelastic loading will cause tne yleld surface to change 1n
accordance wlth Eq. (2.10). Movement of tne yield surface is shown in Fig.
2.9. The criticas state line 1s snown Ln Fi1g. 2.9 as the line connecting
polnts of zero slope for all possible yield surfaces. This separates yielding
1nto densification and dilation. Densification with strain-=hardening occurs
to the right of the critical state line, whille dilation with strain softening
occurs to the left,

Tne "cam—ciay" model nas proved useful 1n representing soil behavior. In
tnis model, however, elastic¢ shear stresses and soll cohesion are completely
neglected. " The assumption of an associated flow rule is also made. This
assumptlon gilves a plastic strain vector normal to the yield surface.
contriputions sucn as those by Mandl and Luque (1970) and Frydman et al.
(1973) nave shown that normality of plastic flow is neither a mathematicai
necessity nor supported by experimental evidence. The "cam—-clay" model
predicts no non-recoverable deformations under hydrostatic loadings. This 1is
not representative of scils. Unloading 1s elastic, wnicn 1S not descriptive
of actual soil benavior.

Sand.er and Baron have 1ntroduced the "cap" model to describe the benavior
of soiis. Thils moael 1s based on the classical plasticity model, deflined by a
vield surface and a strain rate vector. Inspection of this yield surface shows
that tnree modes of soll behavior are possible., These being elastic, fallure,
and cap behavior. Elastic behavior occurs when the stress polnt lies 1n the
region contalned by tne stress coordinate axes, the failure envelope, and the
cap surface. The benavior in this region 1s considered to be linearly
elastic. The failure model of behavior occurs when tne stress point lies on

the failure envelope. This failure envelope 1s assumed to be filxed and 1is

. Pl a0 A a7 o et N N e W AN v AR
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l. b
N glven by
IRy
b
R ' -
; ' R (2,14)
l‘ ’
R .

~ ' ) |
ﬁ ;% where J2 = second invariant of the deviatoric stress tensor \
i -
? A,B,C = material constants
R !! |

N N N |
. v The moael assumes an assoclated flow rule, thus, the plastic straln during the ,
K |
!
: ;: fairlure mode of behavior is composed of a shear component and a dilatant

-

P
‘ ) compenent. The cap mode of behavior occurs when tne stress point lies on the

Vx5l

cap surface and continued lLoading results in an outward movement of the cap.

The motion of the cap 1s related to the plastic strain by a hardening rule.

RX
‘IS
> ?5
q The equation for the cap surface 1s
A
-
i '::
"‘ s P ~P + 1— 2 ! = - 2
( a) g DIy = (P, =P,) (2.?5)

f where Pa’Pb = pressures corresponding to points a and b as
D u.“ .
Y on the Yieid surface

A
a P = mean hyarostatic stress
" ! 11 = trace of the stress tensor
«.'

L

{ & J2 = second 1nvarient of the aeviatoric stress tensor
? N
Dy
?, D = a constant
‘ 1
% ?8 Tne position of tne cap i1s defined by specifylng one of the quantitles, Pa or
LY
) :
g ) Pb. Tne cdap is related to the strain history of the material through a strailn

"
l. L] 1
! 5§ hardening rule given by
(
T -p -3NP
- e *N(l-e B (2.16)

y

W
1 - where M,N = material constants
¢
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Fe

-
v

Aflen tne stress pciul lles on eltner the fallure envelope or tne cap surface,

» " o
R

e cnanges exacily as the plastic volumetric straln for 4
v

tne value of

Stress point on tie cap surface, the plastic straln rdate vector will be

..
'l v,
Tyt

airected as snown in Fig. (2.6). The position of the plastic strain rate

vecrtor implles tnat 1t conslsts of an lrreversible decrease 1n volume 1n

CONnJunetion «1ith an irreversibie shear strain. This decredase in volume

represents volumelrlc nysteresls observead Ln sOll during compactlon, AsS the

Cap moves {orward, tne compactlon resuillng from tne

o
R ‘ -P
o assoclaeted flow will lead to an 1lncrease 1n tne cap parameter e * By
v

“x
" . ,

Eq. (2.10) tnis ieads to an increase in Pb' resulting 1ln a movement of tne cap
DN N
o Lo Tne rignt. when the stress point l1les on the fallure surface, the plastic

Straln rate vector will Dbe directed upwaras and to the left as shown in Fig.

2.8. The plastic strain rate vector 1ndicates an increase 1n volume

a580Claled wWiln tne movement along tne fallure surface. The dilatancy wiil

S
L

lead to 4 decrease 1n tne cap

*JW

parameter, o resuitlng 1in a leftward movement of tne cap by Eq.

~ J
n\"
(2.19). Tne backward movement of the cap 1s limited by tne point where 1t

2 |

iﬁ intersects the stress point lying on tne failure surface.

. Tne baslc cap model descridbed nas been modifled to include viscous dampuirn_

e

s

> and straln narcening. 7Tne viscous cap model 1S used LO represent materials

. Anlch exnidblt hysteresis during cyalic loading. Tnis model was formulated by

v

introdgucing llnear V1sScous damping into tne elastic portion of the cap model.

-,

: The parameters wnichn define the non-plastic portion of tne model are an

- lnstantanecus modulus Gp, a4 long term modulus Gs’ and « relaxation rate 1. The

.h'-

ha
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(Q three parameters are related through the equation
o
! s Gp Gy -
"'
*
-~
e G (G. = G.)
a F S
T = 5 (2.18)
G .
& v
EQ wnere Gy, Gp= spring modull
"y
w Gy = ilong term modulus
it G
i = damping constant
0 a
T = reiaxation rate
ke
r Tne deviatoric stress-strain relation for the viscous cap model 1S glven by
b v
< as. aa. ') 26 d'. =S, .
N 1Jj 5 1] . S 1] 1] 5 )
v = 26CF Tq T (2.19
ﬁ Wwhnere SlJ. = deviatoric stress tensor

v . )
dlj = vyiscoelastlc devliatoric strain tensor

A

To determine the parameters Gp, Gg, and t,cyclic triaxial data are used. A

O

Klnematically haraening faliiure envelope has been added to the general cap

~
!
s

model by repiacing the stress tensor le by (riJ = QH ). Here is a tensor

whose components are memory parameters defining the translation of the failure

k
LR 8

?: surface in stress space. Ln the model, it 1s assumed that kinematic hardening
occurs only 1n shear, ylelding the relation

Y

g.f

o

) G =0 2.20

;\: <K ( )

2

.

{E The «lnematlic naraening rule which governs tne memory parameters G . 1s of the

i)
form

v
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o
= Y15 " figg gy agy0 X egy) d({,’ (2.21)
wnere ulj = tensor aefining tne translation of tne failure surface
[AN
W d
QA 1., = Stress tensor
[\§ ij
8 = a work nardening parameter
o eij = strain tensor
. P
gg dkl = @Qiviatoric plastic strain tensor
in order 10 represent the nonilnear benavior of sclls at or near faiiure, 1t
Eg 1S necessary ULO assume a nonlinear nardening rule. A simple rule of this type
E wnich glves reasonablie behavior at all stress levels 1ls given as
=
I\.
M P
a . =C F e, . (2.22)
ii iJ a a 1j
. wnere C_ = a constant
I «
I
1= (1t . =a, )a, .
. 1 1 1
u Fa = maximum [O, J, J ‘L]
; J - N
2Ny / 5F )
‘i
d =3BP
4 vJ! = A - C 3
2F °
L4
:3 NY = a constant defining tne size of tne yieid surface
oY Here FG 15 related to the proximity of tne yleld surface to the failure
) .
) surface, and the Location of tne stress point on the ylield surface. For alj -
Z{: J, F wiil ve equal to 1.0, Therefore, from £q. (2.22), it 1s founa that C  is
1 the 1nelastic slope for the 1nitial yieiding of tne material 1n shear. Fa
'_
L Wili decrease for continued yleld, and 1s equal to zero when the stress point
W reacnes the failure surface. Upon unloading from thne failure surface, tne
-
»
X
Cs
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vaiue Oof F wWiii lncrease, reacning a value of 2 upon reylelding. Finally, tne

§hE

cap modei nas been modified to represent tne behavior of saturateaq 80118 uslng

tne effective stress approacn. Thils modification is strailgntforward &4nd 13

acnieved Dy replacing the stress tensor by

L - Jdo
rlJ TlJ uolj (2.23)

where Tij = effecrive stress tensor

rlj = Lotal stress tensor

C= < T<-C = - R

4 = pore pressure

=

8,5 Kronecker = 1;: i : j}
K |
tﬁ The cap model has been used successfully to moael several soils. However,
ii there are some difficultles associated with it. A major problem 1s that a
large number of parameters must be determined from experimental data and their
EE determination may require special tests. Another problem is the assumption of
an assoclated flow rule. This assumption 18 not necessarily correct for
!" solls.
EE Other elastic~plastic constitutive models for soils have been developed.
~ These models use different yield surfaces as a nonmassoclated flow rule.
?; However, ihe methodology used to formulate these models is the same as for
- those already described. The problem with classical plasticity theory is that

tne predicted response of a system 1s rate independent. It has been

.

X

established that the response of a soll 1s rate depengent,

; A W N ) L et N L] LA A LA A L e s B 5 N L IO L A
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:, 2.2.1.4 Viscoelastic Mogeis
!i V1S5C0e.3stls modesS desSCriding 30l. Denavior aave not appeared in tne
sllerature as mucn as those formulatea using elastic-plastic tneory. However,
W elastic-piastic tneory is, ln fact, a special case of viscoeliastlc tneory.
\t'_ +
ry 3
Using tne more genera. material mogel provided from viscoelastic theory, soil
!! damping ana rate dependgence may be accounted for. As seen for the "cap
;‘ modei", resulls improved W<nen viscous damping was introduced lnto tne model.
o
A 2.2.2 Micromecnanical Modeis
2> i
N Mecnanistic moderlnyg of s011S nas been approacned from two different
I‘J
viewpoints. One approach nas been Lo treal tne soil as an assembiage of
iﬁ particies 1n contact. The particles withln a soll mass may be random 1n shape

and size; tnerefore, LO use this approacn some .assumptions as to size and

.
y 4

L
e

snape must usual.y be made. Once a model representing the soll mass has been

chosen, the solution consists of representing the deformed geometry of the

particies in contact. The other approach to mechanistic modeling has bdeen to

o

E: consider the soll as composed of a matrix material containing voids. A
!! SCidtlon to this problem consists of modeling the deformation of tne voids

) contained in the matrix material.
Eé Mecnanistic models have been formulated on two scales. One scale has been
- intermediate to that of the experiment and the grains and the pores within the
13 5011 mass. While this scale may be very small compared to the scale of tne

éj experiment, 1t may be qulte large in comparison to the size scale of the

'- grains and peores. 0On tnls scale, the benhavior observed may be thaﬁ of many

Ei grains and pores and may best be described by the use of a phencmonological

fﬂ tneory. The other scaie wnich 1s used 1n mechanistic modeling 1S termed tne
L micro-scale. 0On thLis level, models are formulated at the scale of the grains
i: and pores and are concerned with describing the actual deformation mechanisms
S

“
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present on tnls scaie.
Tne vola geformation modelis nave peen formuiated on DOLn tne intermedlate

3caie and microsmscase. Modeling of objects in contact nas Jsually been done

on thne micro—-scaie.

|
2.2.2.1 <Contact Moaels
\
shen a mass composed of a number of particles 1n contact 1s subject to an
externaliy applled load, tne deformation resuiting from tnhe load 1s due to
drain movement and grailn dgeformation. The movement of tne grains will be
controliled by 1nterparticle friction, cohesion between adjacent particles, and
tne 1nitial porosity of the mass. The grain deformation will be greatest at
areas of contact between adjacent grains, and may be elastic or elastic-
plastic, depending on the stress level present 1in the grains. In addition,
tne grains may fracture, thus changing the number and tne snape of the gralns
and increasing the number of contacts.
Models used to describe this behavior usually‘conSLder the 801l grains to~be'
spnerical in snape. The load-deformation benavior of tnhe spneres themselves
13 considered to De that of an elastic material. Further simplifications are

obtained by neglecting friction, cohesion, and tangential forces acting on the

contacts between grailns. wWlth these simplifications, a logical step 1S LO use
Hertzian contact theory, by which the movement of adjacent spheres relative to
one anotner may be determined. Two spheres 1n contact are shown in Fig. 2.10.
The z axis 1s positioned 4t the centerline of the contact. The soild lines
represent tne qeformed configuration of tne spneres, wniie tne dashea ilnes
represent tne unageformec spneres, From Hertzian contact theory, tine

deformation aiong tne centeriine of contact for each sphere 1S given by

1 3 - vlz) F

4z * BaE, (2.24a)
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8a E (2.24D)

wnere

1

dz,

2 .
u, = deformation along the contact centerline for
spneres 1 and 2 respectively

V1,V2 = Polsson's ratio for spheres 1 ana 2 respectively

)

1.22 = eiastlc modulus for spneres ' and 2 respective.y
4 = radlus of the contact surface
F = force transmitted across the contact

The geformations dy and u, are shown in Fig. 2.10. The raaius of tne contact

area petween the spheres 1s given by

) 2 1/3
. am P Rle (1 - vl ) + Q- v, )
- 2.2
4 R1 + Rz El EZ ‘ (2.25)

where R1,R2 = the radii of spneres 1 and 2 respectively.

Using Eqs. (2.24) and (2.25), the geformation of an assemblage of spheres may
be determinea when the force transmitted across each contact 1s known. Ko and
Scott (1967) have solved this problem for the case of an assmebly of spheres
in ideal packing configurations, under conditions of hyarostatic loading. Alil
tne spneres were considered to be of equal radii and of the same materiax

properties. The solution is given by

2 2/3
A_Av. = 3 3C (l - V') P
E (2.26)
Wnere Vv = volume of soi1l mass
C =1, for sc (simple cublc) packing

vr——
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Y 2/4, for fee (face centered cubic)

P = nycréscatlc pressure

E = elastic mogulus

v = Poisson's ratio
As seen from Eq. (2.26), the term C accounts for the initial deansity of tne
mass, giving smaller volumetric strains for the denser packing configurationsf
However, this model predicts larger than actual deformations for the simple
cubic (sc) configuration, while predilcting smaller than actual deformations
for tne face centerea cubic (fce) packing configuration. To correct this, Ko
and Scott used a combination of sc and fcc blocks to represent the initial
porosity of tne soil. By assuming a distribution of grain contact pressures
and an effective contact radlus, pressure-volume relationships for sands of
three initial porosities were generated. The results obtained are shown in
F1gs. 2.11 and 2.12 along with tne limiting cases of sc¢ and fcc packing
coafigurations. A major shortcoming of Ko and Scott's model is that the path
the soll takes during uniocading is the same as that for loading, which 1is not
representative of actual soi1l behavior. Warren and Anderson (1973) have
formulatea a contact model in which initially some of the spheres are not 1n

contact. The pressure-volume relationship obtained 1s given by

. ) 2/3

A! = 3 (..8.) .gl‘._\)_)._ P

v N, 3 E (2.27)
where Ng = number of gralns 1n a typlcal cross-section

Nc = The number of contacts transmitting force across the

typical cross=section

AS loading progresses, more gralns come 1nto contact, until at some critlcal

pressure, all grains make contact. It 1s apparent from Eq. (2.27) that as the
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LS numoer 2 CcOontacts i3 increased, the amount of volume aeformation resulting
from an 1lncrease in pressure wiil cecrease, Tne moael will predict unloaaing
i! 4.0ng a patn aifferent from tnat of loaaing, as long as the grains were not

§ ali 1nitially in contact. Tne difficulty witn this mogel is the determination

v v

~¥
s

of tne value of Nc' The variation in the value of NC which occurs during
!{ loading corresponds to the rigid boay motion of tne particles within the soil

mass. This mogel does not attempt to describe the actual grain motion within

&g the so1l mass, bul ratner the parameter Nc 13 c¢cnosen to fit experimental data.
N Some models of granular medla include friction of the contact between

N

e

grains.. Rowe (1962) nas considered tne shearing of various assemblages of

;b spneres., Using a minimum energy crlterion, he arrived at the stressaqilatancy
equation

‘- 3 P 1+ av

- 1 2 u - vV

i g, - (5¢ + 77 ITFe (2.28)

f s

RS

“nere g

maximum principal stress

o

{3 = least principai stress

A~

L undrained angie of shearing resistance

B ue1 = the axial strain Lncrement
N

This equation holds only for the case wnen the intermediate principal stress
S : 4
! 1S equai tO the ieast prilnclpal Stress. Rowe states tnatl tnhe angle ? nust
Yy ;
.. Oe replaced by an effective angle of snearing resistance p . ln order to match
[ %
L;

2xperimentas data. Test condltlons may be created 30 that many vaiues of tne

L; undrained angle of shearing resistance, ¢ , may be obtained for the same soil

u

Sampie. However, wWwllh pure pressure measurements during the test, tne value

‘i of the

19

ffzctive angle of snearing resistance may be determined and thils value

nas been found not TO vary with test conditi~ns. The £q. (<.28) does not
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T -5

account for compactlon aurling non-nydrostatle loaaing. Barden et. alb. (1963)

.

4sea Eq. (2.28) to formulate a plastic flow rule and a set of yleld surfaces.

3

Tney testeq tne benavior of sand in plane straln ana found tnat tne yield
" criterion and plastic potential did not coincide. This 1mplles nonmnormasity

of fiow. However, 1t was found that tne volumetric straln was sultably

.
> 1B

prealcted by tnis model. Nemat—-Naser formulated a model to represent the

Denavior of granular material undergoing snear loading. This model represents

—r
XAtk

diiation and densification which occurs auring shear., This 1s done by

-
4

. gefining the dilatancy_angle 3, whlicn defines tne position of a microscopic
s

N shear plane with respect to the observable macroscoplc shear plane. In Lhls
eﬂ model, it 1s assumed that the actual shearing takes place on many microscopic
i~ shear planes rather than on one macroscopic shear plane. To formulate the

w model, Nemat-Naser considered a sampie of soil for whicn failure takes place
ﬁ along one microscopic shear plane 3'=S'. Summing forces on the plane 3'-=S'

glves tne following equations

~

T tan ¢ cos (¢ = v)

| T
v sin ¢

(2.29)

P tan Ou = (¢ — v)
¢l
A

where T = total snear force on macroscopic sample
pi¢ .
. v = dilatancy angle
Qﬁ F* = frictional force along microscopic shear plane
YN -

Tne angies 2, and ¢ are aefined by the equations
- T =0 tan g (2.30a)
; T™* = g* tan .
~ g¥ ¢ %, (2.30b)
L
25 where T = sShear stiress acting on nacroscopilc snear plane
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s J = normal stress actlng oOn MaCroscoplc snedar pliane

™ = spnear stress acting on microscopic snear plane

|
|

g a* normal stress acting on mlcroscopic snear plane
Tne Eq. (2.29) was derivea by considering all stresses 1n Egs. (2.30) to be

acting on ine same element of area along tne microscoplc shear piane. By

l] considering the rate of energy aisslpatlion whicn occurs as the block slides
W
along the plane S'-3', Nemat-Naser obtalned tne equatlilons
-
W
i . T tan p  cos (p = v) ¢
x v = = I (2.31)
-~ Sin 9 sin v
. W = rate of energy dlssipatlion
}g wnere V = the voiume of the mMacroscoplc sample.
Tne dot denotes tae time derivatives. The following approximatlons are made

v concerning w:
i Wos oW e owm (2.32a)
EF 3= 1Y (2.32b)
_"\ -

'. T V

W= - il (2.32¢)
" sin ¢ cos ¢
&)
" wnere ¥ = the rate of snear ceformaticn on the macroscoplc sample.
&
~ Use of these approximations in Eq. (3.31) gives the equation
- : |
- 0 +V in v,
= L Vg _cos (0, *Vy) sin v, o35 |

el 2.33
co

-, vi \ s ¢u

e 2q. (2.33) appliies o one microscopic failure piane. If one mlcroscoplc

Snear plane 13 denoted by 1, EQ. (2.33) LS written as

' + 9 in v
1Y . cos (¢u Ji) sin Vi (2.34)
E: Vi Y cos @u
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tne volume fracticn, Vl, of tne famiiy of particlies naving a ailatancy angle,

15 defined by,

Vi
Pi(v) - (2.35)
wnere Pl = volume fraction of family of particles having ailatancy

angi V..
angle i

Tne restriction if Pl 15 the following

-+
AV
o]
f p; (V) dV = 1 (3.36)
4
[o]

In Eq. (3.36) 3°+ and Gi- form the range of varilation of the dilatancy angle,

3. Using Egs. (2.35) and 2.36) in Eq. (2.34), Nemat-Naser arrivea at the

final result given by

-
\Y)
. o
.i !.- l (‘) ( - -
: e A p(v) cos + i 9
Vy cos ¢u ‘/ﬂ ¢u V) sia v dv. (3.37)
G -
Q

The £q. 3.37 contalns all experimentaiiy observed tehavior of granular
matérlai in élmple shear. However, the accuracy of the predictions made by
Eq. (3.37) will depend on the chosen form of the distribution function P(V).
This distribution function may be very difficult to determine for an actual
3011 sampie, Anotner snortcoming ¢ tnis model 15 that the individual
particles witnin the samplie mass are considerea to be rigid. Wilkins (1970)
took a different approach to develop a theory for tne shear strength of a

granular media. He usea an empirical curve fitting method and Rowe's Eq.

* »” N
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ég (2.283) to predict tne number of unstable contacts 1n a grandidr assemblage as

| a functlon of tne stress ratlo. Accoraing to tnls approacn, wWnen al. tne
Jontacts on a graln become unstable, tne graln 13 no iLonger considered O

F{ contribute to tne system and 1t effectively becomes a vold. when the number 4
of volds not supportling any stresses 1s equal to the number of particles which
continue to carry loads, the medium 1S assumed to fail., Altnough this attempt

) 1s 1nteresting, 1t becomes unattractive due to 1Us emplrical nature. Volume

IO S R S -

cnanges and stress-strain relations are neglected in Wilkins' formulation.

Jtner contact models have been deveioped for whicn the plastic flow of the

adCon oS

bodies in contact are considered to be important. Kakar and Chaklader (1967)
p nave solved this problem for spheres in a variely of packing configurationsf

. In tnls model, 1t 1S assumed tnat the particle surfaces which are not 1in
contact remaln spherical. They solved this for a simple cubic packingf
Assuulptions were that tne volume of the spheres remain constant, that the

contacts transmit the load applied to the assembly, and that the material near

3

ela

tne contact 1s 1n a state of wuniaxlial stress. The material of the contacts

W s m )

was allowed to yield until the stress developed at the contacts was balanced

Sy the applied pressure. The relatlonship that Kakar ana Chaklager obtained

1s given by

| 2 av 6P : 4p
- 7 o= 33y TV e 2y v (2.38)

TR W Ta

: where P = applied pressure

Y = yield strengtn
. V = vorume of tne assembly
ﬁv Tne Zq. (3.38) 1s valid until the contact areas toucn, tnus forming a new :

geometry. The results snown are for a simple cublic packing configuration and !

S

N tnese show tnat tnhe ylelaing model predicts larger strains for a given loaad
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tnan tnose contained from the elastic Hertzian contact model. The actual
stress-straln curve will likely fall in between those by the Hertzlan and
Kakar and Chaklader theories. Not all points within a sphere will yield at

once; tnus, the actual behavior is stiffer than that predicted by the complete
ylelding model as formulated by Kakar and Chaklader.

2.2.2.2 Void Deformation Models

One approach to modeling soils has been to conslder the soll as a mass
composed of a matrix material and voids. The deformation resulting from the
appilcation of loads to a material of this type will agepend on the materials
making up the matrix and voids, the size and the shape of the voids, and the
column fraction of the voids. A common assumption 1ln using this approach to
model soils 18 that the voids are either spherical or flat in shape.
O'Connell and Budliansky (1974) have considered the effect tnat flat cracks
would have on the moduli of a material containing such voids. The equation

they obtained for the bulk modulus of such a material is

K 1 1 - v )
m : .
= v (1 -E
v o L_ ) d) (2f39b)
d=tra
7 L ag (2 39¢)
wnere K = bulk modulus of material

K = buixk moaulus of matrix materiali
v = Polsson's ratlio of materiai

v_ = Poi3son's ratic of matrix materilail
d = crack density

ac = crack iength

V = voiume of materia.

' sty 0 gty el
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Tne Zgs. (£.39) were Qeveloped Dy consigeriong Lne cracks Lo contaln only air,

e

Tre £2gs. (2.39) 1nalcate tnat a sufficlentliy large crdack aenslty would have a

sonsiderable effect on the material propertles, while the Cracks themselves

"

may be of negligible volume. AS the pressure 1s increased on sucn a material,

L

e

tne cracks wouid close and tneir effect would disappear.

Other researchers have considered the effects of spherical voids on

=

material benavior. MacKenzie (1950) determined the effective bulk modulus for

x

0,

a materlial represented by a matrix containing spherical voids. The term

effective refers to material properties which are descriptive of the entire

ﬁﬁ
e mass being consldered. The porous materlal is modeled as a collection of
E; Spheres of matrix material, each containing a sphericai void. Under this
assumption, tne problem reduces to that of determining the solution for one of
,
. 5} Lhese composite spheres wlith a uniform radial pressure acting on its boundary.
i The term composite refers to the material composed of both matrix and voids.
; ! Tne expression MacKenzie obtained for the effective bulk moduirus of such a
. }; material 1s
= ’ 3 (2.40)
X KTVK = y
a'm 4G (V% = 1)
N
: o where K = effective bulk modulus
2? Km = Dulk modulus of matrix material

-
3

G_ = snear modulus of matrix materlal

P -]

- ¥ o~
L]
«'n

5
8

V = voiume of matrix materlital

- V = volume of composite material

g I

Vo ol )
fogt

Tne £q. (2 40) was developed under the assumption that ailr 1s contalned 1in the
- ' .
' voids. Hasnin(1¥70) nas determined upper and .Lower bounds for tne effective

Dulk and sheaer moqQuil of an eiastic matrix materlal whicn contailns spnericad

re.
L
%
v}
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lnciuslions of anotner elastic material. Tne J4pper and lower pounds were
determined from the theorems of potential energy and complementary energy.
The bounas determined for the effective bulk moaulus colncided and this result

1s glven by

R =k, + (R = R (46, + K )c s
4G, + 3K, +3 (K - Re .

wnere K = effective bulk modulus

e
[}

bulk moduius of the matrix materlai

K = bulk modulus of the inclusions

G = shear modulus of tne matrix materiai
C = the column fraction of the inclusions

The bounds Hashin obtained for the effective shear modulus dld not coincide.

These bounds are given by

Gm

G, = (2.42a)

! G (g)
P gy e

m .
Gp (e)

Gu = Gm [1 + T - ])y1 c] (2.42b)
m : .

Wnere G1 = lower bound on effective shear modulus

GJ = uJpper bound on effective shear mobulus

G_ = shear modulus of tne inclusion

P
Tae coefficlents y1(°) ang y1(€) are determined from tnhe equations
26 21 3. (%)
L o) _mo_ (o) . 3 2.43a)
74 T LB 57 = av) (2.43a




(o)
) 26, 8y
/2 = 51
5 -
_ el = =) (p, - bo
(J3) -
y - = o +
1 5 (1 vm)
7,07 1107-10v ) = (1m10w) VI el = (TeTuag =
G
o TV = Ry e )
g (o) 2, ' m |2ty (0)2|—L' ; :
~ — + 3 . = =
1 N AT 2 2Tt
Q
{e)
_o(e) .2 (€) 2? 3
Y y L34 EISEN
_ A p
(€)
) %34
¥2 5Y
G
p 7 5
(e) U TG Poag
LA 2 vy mov) -
50 - v T N A U
(T=10v_)8| 4o = 8(7=10v_ )| = 0
G G
(15w - 5B 205 ) (L - ) o 3
m 1} G o
Yl(e) [ER’ Z 2 ]
o lS(l-vm) 15(l-vm)
el g, v A -1 =1
QO

G
4(7-10V ) + == (7+5v
(7-10) + g2 (745 )

2 = =

35(l-vm)

45
(2.430)

(2.43¢)

(2.430Q)

(2.44a)

(2.44D)

(2.44¢)

(2.44d)

(2.45a)

{2.45b)
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‘ 1

g Wnere v_ = P01350n'3 ratio o tne matrix materiald

vp = Pol3son's ratl1o of tne i1nciusions
li T = 3Near siress on macroscoplc sampile
- Y = snear strain on macroscopic sample
Cs = vyolume concentration of spneres
’, The terms t and Y appearing 1in Eqs. (2.43) anc (2.44) are known from the
A

boungary conditlions used Lo determine the limits on the effective shear

e

'u

& moauias. These bounaary conaluions correspond to the cases wnen the surface
Ry tractions and surfdce displacements are known on a sample of the composite

‘ material. The boundary conaitions for the case wnen surface tractions are

g

?é known are given by

&

N

L Yy T (x=+a, y=2bd) (2.40)

The bounaary conditions for the case wnen tne surface alsplacements are kKnewn

are ziven by

F Y
4 X = = L47a
> < (x, ¥) >y (2.47a)
.
- Y
A uy (x, y) = 5 % (2.47b)
Q? Tne oounds dgetermined by Hasnin nave been successfully used Lo approximate
lq . .
wne effective eiastic modulil of composlte materiais.
"“'
he! Some spnerlical vold MmoderS nave been developed wnhicn account for tne
A Siddtle yierding of tne matrix material. Torre (1948) geveloped such a meoadel

e
(%

4ng tne result ne obtained 1S given by

2.48a)

- <Y o a A - -.‘ l\ - ™
[CO B e e
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Ni» » & & -

o v
o 4= 7 (2.438b)
: e :n
v ﬁ Wnere P = pressure
¥
: Yﬂ = yleld stress of matrix material
N Vrn = voiume Of matrix material
.' ¥ = volume of composite material
) ¥
' }\ - . i
¢ A problem with Eq. (2.48a) 1s that tne matrix material 1s considered to be
¢ .--‘ X . .
; Q. furly piastic. A model snouild De abie TO describe elastic as well as plastic
Y
. pnases, wnlen occur ror botn loaaing and unloading. A step toward including
‘.
- D0ln eiastlic and plastic pnases 1S Lo prescrioe a work—hardening rule for the
»
i matrix material. Chaawlck (1963) developed sucn a model. Aitnough thls model
N

18 rlgorousiy derived, certaln essentlal parts remain in integral form making
b 1t aifficuit to use. Carrol ang Holt (1972) as well as Chu and Hashin (1971)

. TOOK an approacn wnlcn simpllified the results. Considering the same spherlcal

=

pore geometry, they derived the pressure—volume relationship for the composite

o material by temporariiy assuming that tne matrix materlal 1S Lncompressibie.
R <
! Carroi and Hoit then used an emplrical relationsnip to describe tne pressure-=

!! voiume resationship for the matrix material. The empirical reiationsnip used
S i3 given by
t ::"

1 vs

L}

<5 P a = —_ 4

o 3 f o JS) {2.49a)

| ’s

+ IR 3= {2.49b)
QAR Va

*

o Anere vy speciilc volume Of composite material

.

Vn = 3pecific volume of matrix material
b ..
. 4 = 3pecific internal energy
2

e Js1ng tne metnod outlilned above, carroi and Holt oObtalned the pressure-volume

1

|.'.
K W

"
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"
1N
¥ = reratlonsnlp of a mass composed of an l1deasly eiastliesmplastic matrix materlal
L] L
§; contalning voias. Tnls 1s given by
u !i 4G (a - a)
| P oA —2—2 (@, > a> ) 5
RS 3 (a - 1) ! 02 %2 (2.50a)
"
. N
- 2G 2G a 26 (¢ =)
y . PagRe vy - —22 4 vun (—Bl) (3 > aya, (2:500)
- U 3 m a mlil ¥ a-1) I, (31 2@ > &)
LA,
'~ E} ZYm a
. —= .
! - P==3"1n [E:TJ, (@ag 22> 1) (2.5u¢)
1Y
NN 2Ga + Y
> 4. = el m (2.504)
c 102G + ¥ .2
2 a
SR
+ G 2 Gmczo
4 -
b %5 3 GeY (2.50e)
4 ;7 qm
Y
LR
g <L
. a 7 (2.50f)
‘ﬁ m
9, \l
A o)
Ao 1= (2.508)
’.- ke 0 \/m
R
> ! wnere P = pressure
LY
A Gm = shear modulus of matrix material
' Ek VO = 1nitial volume of composite material
L
LR ’

V = volume of composite material

oot

O
~
L}

yieid stress of matrix material

.
s

Tnere are two probiems assoclated witn using Egs. (2.50) to represent s01.i

[}

IR

q Senavior. Flrst, the parameters obtalned by uslng £qs. (2.49Y) Lo gescribe the
ﬁ “»

b :: pressure=voliume relationsnip of tne matrix material are not fundamentally

re.ated L0 tne actual denhavior of tne soil grains. Second, sS011ls exnldlt 4

r%

sronounced reverse yieldlng auring unioaalng wnich 1s not preaicted by Egs.

\2.oU/). Bnatt et al. (1375) attempted to remove tnese difficultles by making
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trne matrix a Monr-=Coulocmb material., The ylela criterion for the matrlx

naterlial 1s glilven oy

(1 +D)o, o0, =Y =0 (2.51)

Wwhere g

1 greatest principal stress

Q
]

3 least principal stress

a constant

Y
.m

yleld stress for the matrix materiail
The results obtalned by Bhatt et al, using tne ylela criterion given by Eq.

(2.51), are given by

4 G (a = a)
m 0

P o= 3¢ (¢ = 1) ’ (Q'OSQSCHJ (2.52a)
' 3
- 2D+3 s+ ]
. 46 (e, 7 a) 26, (a = a) _
3@ (@ - 1) te L Y (a- 1) ! t
2D
_ . 2D+3
Ym ZGm (ao a) | 3
D Y (@ - 1) =1, lag 8 a s ay) (2.529)
. 20
. a R 3
- b= - (2.52¢)
2 Gmao +Y
Nt Tee T (2.52a)
m

i1 Egs. (2.52) ali terms nave tne same meaning as LAOSe appearing 1in

£3s.(2.50). Tne parameter 15 18 determined Irom tne =2Qquation given Dy

2D
26 (a - 3) 23
(¢, = 1) [aLZ-L*l (2.53)
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ANENn tne sol. 13 unioaded 1n the fuily prastic state, the followlng

relationships nold

2D 2D
b4 = Y (24D
P=-B (2,3 _ .= ) S
D a=-1 D a
2 G (a=-a%) 3
m 3+D a 2
g 3 Sl @ '3 (2.54a)

2 G ax - Y
m

Q= =Y (2.54p)
m
2D+3 3D
Y o=y ((S) + 2 (E.)lw]
m a (2.5‘40)

wnere | a* = the value of a when unloading 1s initiated,

The £gs. (2.54) must be solved numerically to obtain the pressure-~volume
relationsnip auring unloadxng.— This 1s done by choosing values of c/a > 1,
ang calculating o from Eq. (2.54b) and P from Eq. (2.54a). Some problems with
tne modei Just described have been recognized. First, the predicted highs
pressure compressibility i1s often too low. Second, low pressure pehavior 1s
not adequately represented. Schatz et al. (1974), moaified Bhatt's model to
allow for the curvature of thne Mohr=Coloumb failure surface. The failure

criterion whicn Scnatz, et al. 1incorporated into Bnatt's model is given by
g, = 0., = ¥1 + (Y1 =Y ) e =0 (2.55)

Wwhere {. = yieid stress for = Q0 condltion
0 max

‘f1 = yltimate strength

The term OVbO which appears in Eqs. (2.55) is descriptive of tne rate of

transition from low to high yield strengths. Another modiflcation which

Py A ST W N Y -s;-.y.:,,-,.:_\.‘.p’" PR ALY A . e Ly AN, :. ‘*..;.\-:,'»"_‘. Y :.'\:,,-.’ o \.“-s;\;-.;-,.;_-.'.:.' .
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Scnatz et ai. lncorporated into Bhatt's model Lncliuded the effects of flat
Cracks on wne dbulx modulus of the matrix materiair. 1Tnls modification of tne
g DuULK mMOodulus 1s given by
e -v -], e J (2.56a)
K = Py t el
¥
£§ £ = Km , (P2 Pc1 J {(2.56D)
‘ wnere Y = a constant
> o1 T pressure required for compiete Crack closure
K = effective bulk moaulus of matrix material
‘f Km = pulk modulus of composite materlal
I = Pressure
o
Tne mcaification given in Egs. (2.56) nas the effect of diviaing the voids
iﬁ 1nto two populations, spnerical volids which aeform accordlng to Eq. (2.55) and
.. flat cracks whicn deform according to Egs. (2.56). These modifications
" ‘
} improve the predictins made by Bnatt's mogeli. One problem with Bhatt's ana
!B 3chatz's mogels 1s that neither aiiows for a distribution of pore sizes. AN
| approach to account for the pore size variation 1n actual material 1s to start
Eé Wwlth the ldeally plastic spherical pore model and then allow for each sphere
> L0 nave a different porosity witnh the requirement that the total porosity 1s
3 .

equal to tnat of tne materlal belng modeled. Xrener ana Schopt (1¥73) nave

o

developed such a model which considers an ideally plastic matrix material.

Tneir resuit for tne pressure-volume relatlonsnilp of one pore 1s glven by

4 Gm v ¥
Iy P = 3 [a(l - —%) -a (1 - __&)]
v 7 0 ‘
P P
. 2% 0
A + ln [1 + (9 .-

(2.57a)
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v
o = R T NI I (2.57Y)
m

where P = pressure
Yy = yield stress of matrix material
V = total volume

Vg * volume of matrix maerial

<
[}

p = curreat volume of pores
Vp = initial volume of pores.

The overbars im Eqms. (2.57) denote averages taken over the eantire-

volume of material being considered. The pressure-volume relationship
for the entire material is determined by evaluating Eqans (2.27) for all
pores present in the material uander consideration. An apparsat problem
for this model is the determinationm of the pore size distributionm.
Other spherical void deformation models have been developed, but

the models described in this section are representative of work which

has been done to date in this area.

2.3 Coaclusions

The soil models reviewed in the previous sectiomns, with few excep-
tions, have only considered the pores within the soil mass to contain
air. The modification of many of these models to represent saturated
soil conditions is straightforward through the effective stress prin-
ciple. However, many situations exist when the soil is partly saturat-
ed. The degree of saturation is a soil parameter useu *o describe the
amount of liquid present within the pores of the soil mass. By defini-

tion the degree of saturation is given by

wo v
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=5 (0SS v s (2.58)

(V3]
i

where degree of saturation

Vg = volume of fluid contained in the soil mass

)
[

p T VO Jume of the pores contained in the soil mass.
-sing the definition given by Eqn. (2.58), the three conditions which a
constitutive model should be abla to represent are

L. §-= 0 (voids completely filled with air), . ) y ~

2. 0<s< 1.0 (voids filled with an air-fluid mixture), and

3. S = 1.0 (voids complecely filled with fluid).
The second condition presents problems, due to the complexity of having
an air-water mixrure present in the pores. Omne problem is that, as the
pressure 1s increased some of the air will be driven into solutionm.
Because of this and the compressibility of the air phase, it is diffi-
cult to predict the pore pressure resulting from the application of a
load. If the pore pressures could be predicted, the principle of
effective stress could ba used to model the partly saﬁurated system.

Phenomenological models have been used a great deal to model soil
behavior. It would seem that empirical models obtained from curve-fit-
ting methods are undesirable for use as a comstitutive model represent-
ing soil behavior. These models should not be expected to yield rea-
sonable results when used to represent counditions which deviate greatly
from those by which the model was calibrated. They also provide no
understanding as to the actual deformation mechanisms acting within the
soil mass. Elastic models are poor representatioans of soil behavior
primarily due to their inability to predict unloading behavior.

Elastic-plastic models have been used a great deal and provide reasom-
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) able results for many situations. While these models may work well,
K .-
4 g they often require a great many parameters and may be difficult to use
L/
y in practice. Little work has been dome using viscoelastic models for
3 - soils.
: Micromechanical models attempt to derive coustitutive laws from
hi)
4 "
K observing the actual mechanisms causing deformation of the microstruc-
g {
’ e ture. Thus, as these deformation mechanisms are more fully understood,
y .
P~ a better understand of the complex behavior of soils can be achieved.
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<HAPTER 3

ASSEMBLAGE JF SPHERES IN CONTACT

1.1 <Contact Forces

In an assemblage of spheres which are in contact, tnere are three types of
forces whicn may act on tne area of contact. Two of these are forces which
aCL in girections normal and tangential Lo tnhe contact area, The third force
18 a torsional couple actling on the coatact area. The forces are shown acting
on an area of contact in Fig. 3.1. The area of contact results from the
compression of one sphere upon another. The remainder of thls chapter will be
concerned witn the normal forces which act on the area of contacet.

1.2 Hertz Solution for the Pressure Between Two Spherical Boales in Contact

The solution for the pressure between two 3pherical bodles in contact was
first determinea by Hertz. Discussion of this solution 1s given by Timoshenko
and Goodier (1951). The Hertz folution will be reviewed in the remainder of
this section.

TWwo sphnerical bodies in contact are shown Ln Fig. 3.2. Here R1 ana R2 are
tne radil of spheres 1 and 2, respectively. Sphere 1 nas materlai-constants
E1 and Vx. whlle spnere 2 nas material constants E2 and VZ' The x, y plane is
tangent ﬁo tne point of contact. The 2, and Z, coordinate airections are
considered positive when directed from the origin of the x, y plane to the
centers of spneres 1 and 2, respectively. when there is no pressure between
tne bodles tne coordinate directions 4 amd 52 are given by

2 2 -2

zl = Rl-[Rl - r ] (3.13)
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“nere £l = x2 . y2

Approximations of z1 and 22 may be obtained by performing Taylor series

expansions of Eqs. (3.1) about r = Q. These approximations are given by

2
r
z, =3 R1 (3.2a)
2
z2. = r 2b)

Tne use of Egs. (3.2) is limited to cases in which the distance r is small in

comparison to R1 and RZ' Addition of Eqgs. (3.2) yields the following equation

r2 (R1 + R
1 2’2R1-R

5)

(3.3)
2 .

As shown in Fig. 3.1, Egs. (3.3) represents the distance between points on the
surface of spheres 1 and 2 for a particular value of r.

If tne two spherical bodies shown in Fig. 3.2 are subjected to a
compressive force F directed along the z, and z, axes such that tnere is force
equilibrium, the bodies will make coutaci over a small circular surface. The
projection of this surface on the x, y plane is termed the region of contact.

The displacements in a direction normal to the x, y plane, of points lying
and w

on the surfaces of spheres 1 and 2 Wwill be denoted by w respectively.

1 e’

As tne s3pneres are presseaq together, the distance between Lwo Such polnts on

tne region or contact will diminish by

@ = W, - W5 . (3.4)

where a = LW, * w21|r -0

g
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1

33. .3.3)

)

and (3.4) tne following reiatlonsnly 15 ootalnea for all

(&3]

rom

colats Lylng on the region of contact.

rZ(R1 + Rz)

Q- (wy +wy) = 2y + 2y &« —5 00
S B (3.5)

It 1s assumeda tnat the radius of the region of contact 1S very small in

comparison to the radil R1 ana RZ' Then when consliaering the local

deformation witnin the reglon of contact, the spnere may be considered to be
repre;apted Dy & haif-=space. This enables one to see the solution for a point

load acting on an elastic nalf-space to determine the displacements, w, and

1
wz, within the region of contact. The geometry for the problem of a point
+Vad acting on an eliastic half-space 1s shown in Fig. 3.3. The solution for

" ront .
the alsplaceAat Zz = 0, in the z=coordinate direction, is given by

2
F(1=-v)
z=0 TET (3.6)

where F

the magnitude of the point load

()]
[}

moduius of elasticity

v Polsson's ratio

The Eq. (3.6) may be used to determine the displacement, w, on the plane z =
J, when a pressure P(r) 1s applied over a circular area on this plane. For a
point A lying within a circular area, as shown in Fig. 3.4, the deflection, w

at point A may be determined from Egs. (3.0) by making the following

substitution

F = [/ P(s) s dods (3.7)
B

1 2Zq. (3.7), the L1ntegration 1s taken over tne loag area, B., The

displacement of point A, snown in Fig. 3.4, 1s given by
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g,
;
: 2
o . (I=v )
" ‘ ~lz = O = 'TE -é PKS,I)) QSQQ (3-3)
i
k Cj n Eq. (3.3), tne angle ¢ ranges from -% to % .
1Y
Dy 3y substituting 2q. (3.3)

-

[}
Fh - into zq. (3.5), tne foilowiong equation 1s obtained.
A
v
. K+ K (R, + R.)
VR 1 . AN o
"‘ -~ i ;{J P(SQQ) aso@ = J = 1 2 R R f r \3.9)
! 12
- — C
SRS 2
N (l—vl )
& wnere Kl =
| »r El
§ N
X §
T 2
.! (l-v2 )
S Ky = —
. 2 E,
S 2
“~
r.’
, Y ii Rc = Lhe area contalned wilthin tne region of contact
:; The pressure distribution, P(s), 1s chosen suca tnat Eq. (3.3, 1s satisfiead.
e
NS The pressure distribution which satisfies £q. (3.9) 15 an eiiiptilcal cap over
lL tne region of contact. A cross-sectlon of tnis pressure 3distridutlon along
oI
r the chord BC shown in Fig. 3.4 is shown in Fig. 3.5. The maximum pressure,
hy -
N - Po(9), aiong the chord BC is given by
D
e
.
o p 172
b P (o) = o 2 2 2 bl J
o o'? 2 (a -r sin 9, "35353 (3.10)
3
[} :5
" 4 wnere Po = the pressure acting on the center of tne zontact regicon
’ﬁ {: a = the radilus of tne region of contact
s -
‘ﬁ The aJistribution of tne pressure aiong tne cnhora 3C in F1g. 3.5 1S glven by
¢ .
& e
1 ¢
p

[ €Y

o P55

n' ‘w‘,

':|

¥

WL W W Y Pt 7 B o U P e P I LI P P AN N I B T e LI ) :
o] '.‘ N " AR I S S R R e R A S A A A R P A N R

[ ) ’ » - - " AN . . S . .

“."‘ UL AN ) “‘.-' ‘."l.‘ w?s. '«“- ) l".l’.n. U A MO XY Nt N falia ey PR " Cad) g N




!&"

. .l "

v

v‘;-“

"-
L]

-

:l.l‘
'.'-'.

RAA |

r

- s
l.'.L' x_'.

DR

G

\,-.-

R ~, . e SO U S P S e e e N e AR P m o ® )
Oy 0 J'{,’.f‘l EAC A NN P T R W PR A A N M
OO .ﬂ,n.,,, { Tonfe Skl it ety et vl 3 A et T al‘.i ﬂm 1{‘3‘11‘






e Rde e W W W W TR TR w"mmmmmmm

g; 64
o~
N
-~
/

P(s,9) = _iQ_Lil : %3 - (s - 2 |1

K )’ 9P 3 oos g 1@ cos 3 (s r cos ) | .
g
(73 59 s m/2) (3.11)

P '
oA

tne relationshlp between thne angles 9 abd ¢ 1s given by

. a sin g =1r sin gy (3.12)
h. .
o

3: It 1s useful tO express tne variable s in terms of an angle g. This

relationshlp 1s given Dy

Wiy

s}

) S =pr cos o+ acos g cosp, (0Qs8 s (3.13)
-~ _
I

Substition of Egs. (3.10), (3.11), (3,12), and (3.13) into Eq. (9) results in

tne followlng equation.

.

;
.
' (Kl + KZ)
o4 - —-;E;———J/’J[ Py (a2 - r2 sin2 9) sin? 3 dBdo =
7 o
2T, §, (3.14)

The expression obtained by performing the integration indicated in Eq. (3.14)

is given DY

[ 2 1
L

1 (K1 ” KE) aan r2n le ¥ RZ) 2

» T 9 Ptz TTT itetiTZR R, IT (3%

n‘!.; .

Tne £gq. (3.15) shows that 2q. (3.9) is satisfied by an elliptical pressure

- 41stribution acting on the region of contact, provided that the radius of the

bW's
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contact reglon, a, and tne displacement, x, are given by

T R, (K, +K,) P
R B T i .

2 (R + Rz)

Ta (K, +K)P
4= L 2 _o . (3.16b)

The constant, Po, 1s determined from the static equliibrium of one spnere.

For equilibrium of one sphere, the integral of the pressure, P(s), over the
region of contact must equal the force, P, pressing tne spheres together. The
pressure distribution, P(s), symmetric with respect to the center of the
coﬂtact reglion and 1s given by

P 1/2

P(r) === { a2 - 2 , (r < a)
a - (3.18)
The condition for the equilibrium of one of thne spheres snown in Fig. 3.2 1is

glven by

a p 1/2
// P(r) dA = 27 f —a°- (a2 - 2] rdr = F (3.19)

R Q
c

Integration of Eq. (3.19) ylelds the following value for Po

3F
o] 2 (3.20)
a2ra

he displacements, w1 and w2, normal to tne region of contact and lying within

tne region of contact are determined from £qs. (3.3). These Jisplacements are

given Dby

2 -
Wy * = (227 - 7], (r < a) (3.21a)

\-81-5~';~\-E';i
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T
K Po 2 2 2
4a (2a” -« '], (r < a)

@ - (3.210)

WZ3

> The solutilon obtained for the Lwo spheres 1n contact provides informatlion
thy
! !'.' - N
apoult the alspiacements and stresses occurring on the surface of tne spnere,
- _
kY W1tnln the reglon of contact. It does not provide a solutlon describlng the
LS

stress ana dlﬁplacemenc fielas in the interior of the sphere.

T

3.3 General Solution to tne Axisymmetric Field Problem of Elasticity for a

)

Regilon Bounaed by a Sphere

a ¢
iy

€

In this section tne solution of tne elastic fiela equations for a spnere

2
.

subject to either axlsymmetric surface displacements or surface tractlilons 1S

}

obtalned. A spnere 1s snown 1n Fig. 3.0 relative to both the rectangular
coordinates, (X,y,z) and tne spherical coordinates (p,9,9).

't 4he followlng restrictions are imposed on the spnere

1. Surface displacements or tractions are axlsymmetrlic Wlth respect Lo

o tne z-axis.

2. The spnere is in static equillbrium,
. |
3. 3ody forces are negligible.
o Tne approacn taken to obtaln a solutlon to this problem 1s Lo use Boussinesqg's
::"
Soludtion in the narmonic function.
x>
>~ Tne general solution for a region wiltnh torsionafree rotaticnal symmetry,
-, in tne atsence of body forces, may be obtainea as tne sum Of ine two
N
aisplacements [ieids given Dy
-~ - -
2G uyp = V9 (r,z) (3.22)
- 26w, = T
=/ [z V¥ -4 N ~
» K (22)] = 4 (1-v) ¥ (r,2)8 (3.23)
S - -
o where Ul,uz = Jglspiacement vectors 1ln rectanguldar coordlinates
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—
7 = graalient operator
e ,ey,e, = ynltl vector i1n tne x,y, ana z cocrdinates directlons
9
respectively

2
r‘:x2+y2+z

2
G = snhear modulus

v = Poisson's ratio

-

In Eqs. (3.22) ana (3.23) 9(r,z) ana y(r,z) are arbitrary narmonic functions.
Hencefortn, the solutions given by £gs. (3.22) and (3.23) w1ll be referred LO
as tne first and second Boussinesq solutions, respectively.

The region of interest is bounded by a sphere; therefore, it Will be
4Sefus tLO empioy spherical coordinates. Spherical coordinates are relatea to

rectanguslar coordinates through the mapping

X = 9 slne COSH (3.24a)
Y = p slne sind (3.24b)
Z = 5 COS¢ (3.24c)

Tne relationship between tne displacement components 1in spherlcal coordinates

and in rectangular coordinates 1s gilven by

4 = 31NnQ COSH u_ + 31ne SLNB 4 *+ 0S¢ uJ (3.25a)
o) X y z
u N
= COSQ COS8 u_ + 20S¢ Sing 4 =~ S1ng . .
? o cOS8 u 9 ¥ 109, (3.250)
A = 31N 4+ 2086 u {3.25¢)
3 X Y




FR&

-
[ 1
L..l

-
«

P A

S
P

ez

£

i)

P T " 20N} e
' P T T T =gl hed) ' X IR0 )
"",l 0¥, t,l,a.“,c,‘?w.lfo.lgo, ,h‘; 3 K .l-"la WA Y T b O T A A TN TUA N W B M ™ .‘t‘!‘o's'l‘.'n‘.h‘-h .‘-"-'

Wnere “_, 4_, 4. = components of tne dispiacement vector in the p, ¢, ana

J coordinate directlons respectively.

4, 4_, u_ = components of the displacement vector in the x, y,

Z coorainate directions respectively.
From Eqs. (3.22) ana (3.25), tne displacement components in sphericai

cocoralnates for the first Bousslnesq solution are given by

26 u, = sin® cos?d %% + sing sind 22 + coso §¢
‘ w z (3.20a)
3 3 ad 3¢
2G u¢ = cos¢ cose-%g + cosd sin8 %; - gin¢ 3z (3.26Db)
(3.26¢)
2G Ue = 0

The combination of Egs. (3.23) and (3.25) gives the following displacement

components for the second Boussinesq solution.

26 uq = 3in¢d cose~%% + 3in¢ sin® %%
(3.27a)
]
+ cos?d %- (3-4V) ¥
26 u, = cos?d cosB ¥, cos¢ sinf =—
b ox Ay
(327.b)
- sin® %- (3=40) ¥
(3.27¢)
26 u, = 0
= 9(0,0) (3.28a)
Vo= ¥(p,9) (3.28D)

OO
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from £q. (3.2ba) tne partial Jderivatives of tne narmonic functlion ¢ appearing

L 2
.7

1n £qs. (3.26) are given by

30 3¢ 30 , 3¢ 30

E‘» 3x T 3¢ ax 3¢ Ix (3.29a)
: 30 30 30 , 30 30 o
3y  Sp 9y  od Iy (3.29b)
30 30 3 39 3¢ |
3z 303z "% 5z (3.29¢)

From zgs. (3.28b) the partial derivatives of the narmonic function appearing

-

in =zgs. (3.27) are given by

3v 3y 3p 3w 39
ax T 3p ox ' 3¢ ax (3.30a)
dv 3y dp dy 39
3y T 3p dy T 3¢ dy (3.30Db)
s _ v By e
3z T 3p 9z T 9¢ oz (3.30¢)

Tne graaients of o and ¢ are obtainable from Egs. (3.24). These gradients are

L3 0 e T 3p o
60 ax Sx ° ay ey Y3z %2
= Slne cosd e * sing Sind e, + cose 2, (3.31a)

5@ 3o 39 g0 ° cosp cosd " _ cosg s1ng
a == g +=- e +T, €, mw——— g+ e
ax X ay y 92z pA [0 X ] y

— ¢ (3.310)

T

Combining £gs. (3.26). (3.29), ana (3.31) gives tne following displacement

components for the first 3oussinesq solution

3¢
i %93 (3.32a)
3in >
26 4 = — a(:iso) (3.32p)
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combinlng Zg9s. (3.27), (3.30) ana (3.31) gives tne followlng displacement

components ror tne secona Boussinesq soiutlon

2G Uy = cos® | 0O %ﬂ - (3-4V)¥
0 (3.33a)

. dy ‘
2G Uy =-3in® | cos? 3(cosd) - (3-4V) ¥ (3.33b)

In Egs. (3.32) and (3.33), cosy nas been chosen as an independent varlable.
The narmonic functions, 9 and y, will De represented, in part, by spherical
narmonics wnicn are functions of Cosg.

Tne strain-alsplacement relationsnips referred to the spnerical coordinate

system, for the case of rotational symmetry about the z=axls are given by

g =990
00 0 (3.34a)
. 13U 4
o0 T % B0 T h (3.340)
- S0 cotd
€56 5 + 5 ud (3.34¢)
e _ 1L 1 aup JuQ 4o
v e 2Ly 8 f T T o (3.344)
€ = O (3-3ue)
(o))
Eap = 0 (3T34f)

From tnese strain-~alsplacement relations and the displacement components given

by £2qs. (3.32) ana the strain fleid for tne first Boussinesq solution is

2
37
2G E'Qc "50—2 (3.35a)
2 2 -
26 ¢ . sin"® 3 ¥ _ cos9 39 +.£ 39
<50 > 30 (3.350)

oz 3(cos¢)2 32 d(cose)




PR

,..t 0,"-. ,v.l't -A t h""‘.h l .l o

~
\\
o 3¢ coso 3%

G £ W o= ——— -

G %58 * 3 55 2 3(cose)
¥ o

G & - san,ﬁ 3 _ sing¢ 3”9

2 ol p2 o(cos®) 0 dpa(coso)

=0
ol "o
e
:: £ = O

®p

-,
K 2 -
.- Substituting the alsplacement components glven by Egs.
"o displacement relations given by Egs.
Ya

for tne second Boussinesq solution

72

(3.35¢)

(3.354a)

(3.35e)

(3.351)

(3.33) 1nto the strain=

(3.34) yields the following strain field

2
J
26 € =cos e | B a2(1m2v) $E (3.36a)

i pp 892 P

| d cos2 sm2 cos azw

" 26 ¢ = cosp & _ L) a(QZs )t 9CO3¢ 5
[;:" PQ P p COS9 P 3(cosg)

51n2@aw

g - 2(1 ) a(cosw) (3'36b)
;' Y COSZQ oy
o 2G €49 = COSO YR 3(c0%9) (3.36¢)
- . __, S1npcosy _ dy _ . dy
- 2G o0 2(7 v) ) 3(cose) (1'2V) Sine 3o
) -~ sing cos¢ Aa 2 (3.304)
. ~ 3056 (cos0) :
w

. o " 0 (3.36e)
-

- e, =20 (3.30f)
i g
ﬁs The stress flelds corresponaing to the two solutions are determinea from the
\‘

O
» I- a~ “.:'A.o't -'i 4
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E:- constitutive equatlions for an 1S0troplc, linearly elastic materiad. Thnese

e T

W constltullve equations are
i

1

)

e g = 2G ¢ + e (3.37a)
4 ;h op “pp

\" |

\*

%

]

i ! g =2G e + \e (3.379)
v PP Y

.

N

‘,; "

L .. = 2G g, + Ae (3.37¢)
4 39 99

-

c' ::;.

B 5 = 2G ¢ (3.374)
e .- o pY

4 ‘M

¢

. 0. = 2G ¢ (3.37e)
- \:: op 9p

I

‘ ti o . =2G e . (3.37¢)
‘ P0 9o

% o Ahere e = volumetric strain = e * € . * €4

K

l; g‘, A = ZVG

X (T=2v)

- |

N W Substitution of tne strain field given by EQs. (3.35) i1nto the constitutive
( _
h E_; reiations given by Egs. (3.37) gives tne followlng stress field for the firstc
[\." ?

I v

. Boussinesq 30idtion

> a7,

> v,

a4

4 .2

L - R (3.38a

» -,' 50

:: o sm2;: a‘a@ CcoS¢ 3Q 2% 3

v 3 - p (3.380)

2 o(cos

4 5% s(cose)® o (coso) 7P

;c

v - 139 cosp od (5.380)

:: 5 58 % 5 3p 02 3(cos®) 3
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Substitution of the aisplacement components given

. .2,
_ Sing 1 39 g P
ol L p al(cosy) gpo(cose)
=
= J

by £gs.

(3.3064)

(3.38e)

(3.38f1)

(3.36) 1ato the

constltutive relations given Dy £gs. (3.37) yielas tne following stress field

for tne seconc 3oussinesg solution.

g
po

a
9

The term of tne

functions sat1sfy Laplace's

Q...

2 2
_ Slngcosg _ 3w

.;-.r '.r-e-a"‘r'-ﬁ.‘
W A

2 N
3 Y
= D COS¢ —5— =2 (1=v) cos¢ 53
ap
Sin2¢ ay
- 2V —
0 3(cose)

~

o

= 1-2v) Ccos¢ 53

e e Y :,_.‘-_.’{-1.‘-
A (et b

8(005¢)2

d
sine [ (1=2v) 3% + 2(1=v)

narmonic functions,

equatlon.

’._./ AN I

3
+ (1-2v) cosg 3%

r

2
pL COS » * 2Vsin b 130

COS¢ ay
P da(cose)

.2
- 3y 1
T cOses opa(cose) |

¢ Ana v,

L

-y

Y
r'»lylz A

[t MY

oy

c0s9)

Wililil De Celermined.

A,

W) A
n‘n... “-,\

(3.39a)

(3.390)

(3.39¢)

(3.394)

(3.39e)

(3.390)

These

ok
J.p

When written 1n spherical coordinates,

".-\.- AL .;- h:*"' .’\
¢
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vnls eqqatlon +3
%5 2 38 30 323 1 3%
59,2939  c0t9 0 159, 2 =0
2 0 20 2 39 2 2 2,2 2
30 0 07 39 p“sin"9 36

A particuiar soiution to EqG. (3.40) 1s of tne form

e =%
n n
Anere ¥ =3 (cosg¢)
n a

e 2k £ah he Aak AnE Lad taR o ol sadiod oot aload o aheuSle din Ade ale fe AlaeSli it A i ke diakdnl
wW YR
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(340

Jubstitutlng the solutlon given by Eq. (3.41) into Eq. (3.40) yields the

foiiowlng

aZVQ ¥

in2 - —~2n
$in®o 3(cos9) 2 cosd 3 (coso)

+ n(n+l) ¥ =0
n

(3.42)

Tne £q. (3.42) 1s Legenare's equation, for which there are two solutions.

Tnese s014ti0ns are given dy

¥ =p, (cosd)

(- < a < ®
n —

¥, " Q (co89d) , (= ®»< g < =

Tne soiution Pq 13 calied the Legendre polynominal of degree n.

;n 1S cali=a tne Legendre function of the second kind of degree

sSQiution Qn contdins a logaritnmic singuiarity cosy = * LO Lne

consiceration.

Tne soldticn Lo be employeaq 1s Pn‘ An equation

(3.42a)

(3.42b)

The soiution
n. The

prooiem under

defining Pn i3

‘




or
x

1 q°

A d(cos@)n

PU. COSQ) = (CoszQ - l)n (

Las
F

Lo

N

4.
2'n

dencerortn, tne argumnent or Pn 1S Ccosp. Recurrence reiations for tne Legenare

polynomials, appilcavpie for aili values cof n are.

P =P (3.44a
n n=1 (3 )
(2n+1) cosy Pn = (n+l; Pnﬂ + 0Py {3.44b)
‘1né~ P' = n?P - n cosp P (3.44C
Sinp Poo= P, cose P (3 )
d Pn
where P!

n d(cosy)
The narmonic runctions, $ and y, will dte of tne form glven by Zgq. (3.41),
wnere Vn 1s given by Egs. {(3.42a). By virtue of tne first recurrence relation

given by Egs. (3.44), tne functions, 9 and y are given by

) = 5 P ’ (— ® < n < Q) (3.45&)

Yy o= D P , (=2 < n< =) {3.45b)
in tne Zgs. (3.45), tne functions », and v represent component solutions. A
soiutlon to a particular problem characterized by specific boundary
conditions, wWiil 0e determinecd Dy Superposition of tne component soiutions L
anda [ The component 30i4tlons toO tne first ard second Boussinesqg solutlons

4l.i nencefortn be denotea as ;Anj ana :vn:, respectiveiy. Using Eq. (3.45a),

lne aispiacement strain, and stress fieias for solution ;Aq; are given by

f
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e

v
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—
A g

Bu, =~ P (3.40a)

‘.
:
Asd

By T ey P \3.400)
-
4y = 0 (3.46¢C)
u
i (n+1)(n+2) .
v 2G LJDS ——;—H:§~—— Pn {3.4pQ)
K
26 5 === | B - (aeD) (a%2
2 9 BF3 n-1 n a+2) Py (3.40e)
!
= _ _ _n+*1
:__-h ZG c.ae = Pn+3 (5.46f)
. sin
2G ¢ - ®
N Sov A3 (ar2) Pl (3.468)
¥ fo6 TV e
idp = ] (3.401)

. larl)n+3)

. a0 3 n (3.405)
ot - )
o
>
vl .l A\l . -
A 330 C The3 L PhegE (n+1)(n+3)Pn j (3.46k)
e, P
1
‘:\ 3 = n+1 N
o 90 n+ (3.402)
v- 5 3
- . Sing \ '
7 Jp¢ n+3 (n+2) 2} (3.46m)
p
{Q
| »
| T8 =0 (3.45n)
| %
| "
a
LY
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‘,';'. = :
Y90 T ° (3.460)
( ,
! Using the expression for y shown in Eq. (3.45b), the displacement strain, and
, stress flelas for solution [an are given by
n . =(n+4=4v)
B Gy - ane1)pn"] L (n*1) Ppey * 0 Ppoy (3.47a)
] ‘
E_S 2G u = —-i% [ (n-3+4v) P! + (n+4=4v) P' .| (3.47b)
P (an+1)p"T! nﬂ, n'ﬂ
o g =0 (3.47¢)
N (n+1)
' ~ n+
26 e T —z L (nr1)(nedsbu)Po o+ n(ned=bu)Po 1] (3.47d)
- (2n+1)p ~ o ) -
N X
. _ 2
2 g = mamd L (AN Py s (Tt ek Py
wn{n+1)(n+d=4y) P Jna (3.47e)
£ 1 |
8 fap T vz L (Wt Py v PL (3.471)
: |
- _ - Sing 2 -
2G “oo (2n+1)pn*‘2 L (n +2n=irav) Phe
! + (n+j)(n+‘4-4v) P;xﬂ] (3._478)
._:
o €06 0 (3f“7h)
‘-
o
an =0 (3._1471)
B +1 2
5 ot 1)1+2 [(n *50+4-2V) B+ a(a%é-4v) P, (3.473)
%0 (2m+l)p o A
Jo0 * — (a+1)(n? a+1-2v) p + n(n+l)
% - - n({n+ -
o (2n+l)on+2 o+l a+1)(a+4=4v) Pn-i-l
-
- (2n+1) P!
e n (3.47%)
i
v,
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Y9 T Thra L (nv1)(1m2v) P+ PRy (3.471)
p ' ' .

T = j}% L (n+1 ) (n+d=4y) *p;lx] + (n2+2n—. +2v) P'+1J (3._i47m)

oy T 0 | (3747n)

90 = 0 (3.470)

The boundary conditions to be considered correspond to the two cases when
elther the surface displacements or surface tractions are specified on the

gphere., For the case when axisymmetric surface displacements are specified,

tne known displacements components will be up and u¢. These quantities may be

represented by

Uy = (R, cose) on S (3,48a)
uw = uo (R, cos¢) on S (3.438b)
where S = the surface of the sphere

R = the raaius of the sphere

o IR I T . ., .._\..-,-\ 0 ’n’ " » L -\_w- % ‘;’:_ -F-*q »..f'"".".' L% P b} ‘

] . ‘ \
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Top - N gmme: .
TOr tne Case Wnen axismmiric surface tractions are specified, tne known stress

.

2 A

ccmponents wiil oe cpp ana op¢. These quantitlies may be representea Dy

g = g R, cos on S (3.49a
. 50 00 ( ®) (3.49a)
o =g (R, cos on 3 L49b
Ef 00 0o (B @) (3_ 9b)
g; To appiy the boundary conditions given by Eqns. (3.48) or Eqns. (3.49), these
o ooundary condltions must be represented as series expansions. For the
o
oy
S al1splacement boundary conditions given by Egns. (3.48), these series have the
Cﬁ form
P
A u_ (R, cose) = £t op (3.50a)
o u n _
n=0
i ®
u_ (R, cose) = sin Y4 o .
0 ¢) = sing ) Mg Pa (3450b)
. n=1
Tne Eqn. (3.50a) 1s a series expansion for a Legendre polynominal. Eqn.
E! (3.50b) 1s the series equation for an associated Legendre function of the
o0 first kina, of degree n. The significance of Eqn. (3.50b) 1s that the cos¢ =
i , ,
i’ + 1, the series expansion ls equal to zero, which 1s required by the condition
f? of symmetry. The coefficients in the series are given by
n
a . !
.4 (3n+1) _
"y St T J up(R, cosy) Py (cose) d (cose)
-1
o (n =0, 1,2, 3,...) (3.51a)
‘:"‘ N B B
. d (2n+1){n=-1)t
Ef n, = IR i up (R, cose) sine P, (cose)
, -
d (cos¢), (n =1, 2, 3,...) (3.51b)
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In 2qns. (3.51), tne superscript 4 1S usSed to dencte tnat surface
disp.acements are tne specifiea bounaary conaitions. Expansion of tne surface
tractions glven by Eqns. (3.49) 1s done 1n tne same way as tne surface
alspiacements, except that the coefficients appearing in Egns. (3.50) and
(3.51) are denotea by gg anda Rﬁi The superscript ¢ 1s used to agenote that the
surface tractions are the specified boundary conditions.

Tne tEgns. (3.50) show that the expansions of the boundary conditions are
in terms of Legendre polynominals, or their derivatives, of one degree n. 1In
orger to meel these boundary conditions, the quantities belng specified for
solutions [Anj and [an snould also be in terms of Legendre polynominals, or
thelir derivatives, of one degree n. Solution [An] satisfies this requirement,
but solution [an does not. Therefore, the solution [Bn] 1s formed from a

llnear combination of solutions [Anj and [Cn]. The component solution [Bn]
is Ziven by

LBA] = (2n+D)[C ) = (n+d=bv) [A__.] (3.52)

From Eqn. (3.52), the displacement, strain, ana stress fields for solution

[B_ ] are
(n+1) (n+i=4yv) :
26 u = = e = P (3.53a)
26 u, = - ;ﬁf% (am3049) Py (3.53b)
Ys = 0 (3.53¢)
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) 2
(a+l ) (n+dsy v) N
o0 n+1 n+1 (3.53a)
e . .

v
(9]
[

. 1
2G e = p—;rz L (ne3+49 PL = (n+1)

P9
(n°-n+1+30v) P__. | (3.53e)
1\
2G €9 = p“+2 L (2n+?)(n+1) Pﬁ ? + (n=3+U4v) | pé (3.53f)
sin
26 ED@ ® pn+2 (n *2n=1+2v) pn+1 (3.53g)
€350 = 0 (3.531)
- (n+1)(n2+5n+M=2v) \
%00 I'Jn+2 Pnei (3.53]

1 2
90 ~ Thrz L (nr?)(n -n+?-2v P

00 o™ (n=3+4v) P ) (3.53k)

Ugg " ;ﬁ}g L (ne1)(2n+1)(1=2v) Py + (Am3+dv) PY) (3.531)
o ;;fg (n° 2T+ Py (3.53m)
%98 T 0 (3.5?n)
o, - 0 (3.530)

The solution to the problem under conslderation will be determined as a

Suitable combination of tne component solutions [AnJ and [BnJ. The form of

the solution 1s taken to be

e e a e S R ~ SRS
SN “ ',_4'_ PRI I - >
VA e N e a ol e )
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(si= 1 [“n (aq] + b, [Bn]] (3.54)

’ -

-

... In Egn. (3.54), [S] represents the solution to the aisplacement, strain and
stress fields. The coefficients a, and bn are constants of superposition
wnich are chosen such that the specified boundary conditions are satisfied.

Some values c¢f the ccnstants a_ and bn may be determined by evaluating the

[N n

Y

s component solutions [An] and [Bn] at p = 0. These solutions become singular
£ at the origin (p = Q) for n 2 0. The solution should not contaln these

< .

h singularities, as the condition that [S] be finite at the origin ls imposed.
r,

&Q This condition requires that

B‘\

’
s

a = bn =0, (n20) (3755)

Therefore, the solution [S] is glven by

L
! s;] = La_ln [Al_an * b EBsn] ] (3.56)
n=1
| %
“ 3.3.1 Solution when the Displacements are Specified on the Surface of the
; .
Spnere
o
B The boundary conditions which will be considered are the displacement
. components, up and u¢, specified on the surface at the sphere. Due to the
AR
ks restriction of axlsymmetry, these boundary conditicns can be represented as
N
Lo
Up - up (R, COS@) on S (3.573)
£
e U¢ (R, cos¢) on S (3.57b)

3 ) . A .
PR L M T S ; h t . VOO (IO
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s



—— — i T TN T W T '""“‘“mmm

84

o we s>

where S = tne surface of the spnere

-
£

R = tne radius of tne sphere

o, Provided tne functions up (4, cos¢) and u¢ (R, cose) are sufficiently smooth,
)

they may be represented Dy

L L

k|

[}

3

' 4 p (3.58a)

! u_ (R, cosgp) = .58a

- 5 ( o) nfo I _

&

L4 U, x

- ¢ (R, cos®) = sinp I ,u (3.58b)

i v. nn Pn

(S n=]

: ] ]

j Y} The coefficients §_ amd N _ are given by

W n n

!

e 1

S E: = Sggill /7 u_ (R, cose) Py (cosg) d (cose) (3.59a)
=1 P :

[~

1
2n+1 ~1)1 .
ﬂﬁ = 4 n;(;i?)!), n{ uy (R, cose) Sing

Pé (cose) d (cosg) (3.59Db)

B 55s

/ The solution to the 1interior displacement, straln and stress flelds 1s assumed

)
; }: to be glven by Eqn. (3.56). Using the displacement components U, and Uy of
X 7 A . .

P [S], in conjunction with Eqns. (3.58) ylelds the follcowing set of equations

o from which to evaluate a, and bn'

‘ .

'

o S

4 (1=2v) R b_) = G & (3.60a)

] . .

Y u 2. u LU _1=n
N na_ .= (a+1)(n=2+4v) R7b_ o = 2G ¢ R,
?¢ l‘n‘ hlee . b $tud

)

N (n=1, 2, 3,...) (3.60b)

g &

g
N ’I . .‘l‘. U

¥ " W = Ty i 0
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Solution of Egns. (3.60) gives tne following constants of superposition.

G [(n+*5=4v) ai + (n2 + 3n=2+4nv) qﬁ J

R [3n+1=2v(2n+1)] R™"! '

(n=1,2, 3,...) (3.61a)
€ G [qn +n Nn] ,
-n-~2 a=0,1, 2, ....) (3.615)

[3n+1-2(2n+1)v] REHL’

The displacement fields for the component solution [An] and [Bn] vanish for

n

u u ) . . .
= 1. Therefore, the values of a_, and b_, remain undetermined. The solution

Lo the problem characterized by the boundary conditions in Eqns. (3.57) is

given by
(si= . a . C(A__ 1+ , b (B 1] (3.62)
=nei -nsi sn-=2 =nme
n=1 X _ n=0
In Eqn. (3.62), the constants of superposition ainr] and bfn-z are given by

Eqns. (3.61). The coefficlents g: and n: appearing‘in Eqns. (3.61) are
evaluated by Egns. (3.59) for arbitrary surface displacements of the form

given by Egqns. (3.57). The component soilutions [A ] and [B~nr2] may be

=n=l
determined from Eqns. (3.46) and Eqns. (3.53), respecﬁively.

3.3.2 Solutlon whnen the Tractions are Specified on the Surface of the

Spnere

The boundary conditions to be considered are the stresses, opp and 00¢

speciflied on the surface of the sphere. Because of the restriction that the

surface tractions be axisymmetric, these .stresses may be represented by

" B e B B Ri oo Sl o ok L a o Aol af S ol ol cal ol Bad Bod dbd ik SoktSagt aal 2 oaTh on o 'S s-E a2 AR ath A A b ard Ak ek ath ok el abh ath abh a’h sl sbhcash ol st ald ol alt |
N 85
as
{ )

' ’:
- u ‘ 2. u a4 1=n
o ~a _, * (n+5m4v) RD_ ., = 2G n, R
=1, 2, 3,...) (3.00c)
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3 = 0__ \A, COS¢Q) on 3 (3.03a)
op PP

o =g (R, cosg) on 3 (3.63b)
po Po .

Provided that the functions opp (R, cos¢) and op¢ (R, cosg) are sufficently

smooth, they may be representea Dy

Ipp (R, cosp) = 7 g7 P, (3.04a)
n=Q
® L}
To¢ (R, cos¢) = sing ng Py (3.64b)
ns=]
The coefficients Eg and ug are given by
g (2n+1) !
£y = T -{' %50 (R, cosg) P, (cosp) a (cose) (3.65a)
o {2n+1)(n=1)4 ?
ﬁn- 2(ne {1 g p¢(R’ cos¢) sSing
';' (cos¢) d (cose) (3.65b)

The solution to the interior displacement, strain, and stress fields are

assumed to be given by [S] in Eqn. (3.56). Using the stresses %50 and 90 of

[S] in conjunction with Eqns. (3.64) ylelds the following set of equations
o o
from which to evaluate the constants a, and bn‘

2 (1+v) b_, = gg (3.66a)

e (n+1) [(n+*1)(n=2)=-2v] R b—.n.-e = R gn .

(n=1,2, 3,...) (3.66b)

n(n=1) a_

008 ) q |0 Q | DO
lu‘o l‘oli‘..t‘ .“ o ,i". (,“!‘.'i,‘ o ‘..0.’. " ‘.n ". ..5 ‘. y ‘ o .i“.d‘ ““ 2 ."l QI.'%.!Q‘. t X AR A .'."5) %, O g.‘ ;'e‘h.‘!h‘-.'
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-(n-1) a___; * (a2+2n-1+2v) RZ b_y_p * R Mo

(n=1,2, 3,...) (3.00c)

The Egqns. (3.60) are not compatible for n = 1, thls value of n results in two
equations wWith one unknown. By the consideration of static equilibrium,
another condition may be obtalned which will render Eqns. (3.66) compatible.

A sphere with symmetric surface tractions about the zmaxls is shown in Fig.
3.6. Under symmetric loadlng, equilibrium is automatically satisfied in the z

ana y coordinate directions. Equilibrium of the sSphere will require the

following

iT . e, ds = 0 (3.67)
o .

wnere T = stress vector

;z = the unit vector in the z coordinate direction
In Eqn. (3.67), the integral is taken over the surface of the sphere S. The
stresses wnich will be known on the surface of the sphere are cpp and op¢.
Therefore, the stress vector T is given by

= g e + ¢ e (3.88)

wnere ep, e@ = Tne unlt vectors 1n the p and ¢ coordilnate directions

respectively.

A -~

-

ine unit vecLors ap and ow are given by

- + 31n .6
e, = sine cose e * sing sing e, * coSp e, (3_b9a)

-~ -~ ~

>

e@ 3 CO0S¢ COosH e, + COS$ sLns ey % s1no e, (3.69b)

Substitution of Egns. (3.68) and (3.69) into Eqns. (3.67) gives tne following
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conaition for equllilorium.

LOpp COS¢ = 0 Sing j ds = U (3.70)

o] o

The stresses L and 90 may be expressed 1n tne form given by Eqns. (3.564).

The surface element ds is given Dy

ds = R2 dsa(cose) (3.71)

Using Eqns. (3.64) and (3.71) in Egn. (3.70) yielas the following condition of

equilibrium,
2m 1 @
- - 2
RS L cose E: P! (cose) = sin"p
H‘ n-o
) qﬁ P' (cose)| ded(cose) (3.72)

n=1

Using tne recurrence relation given by Eqns. (3.44¢) 1n Egn. (3.70) gives

21 1 L ©
R® J I | cose ) Eg P, (cose) = qg n P _. (cose)
0 = n=Q n=] .
+ cosp | no n P, (cosp) | dBd(cose) = 0O (3.73)

n=1

The ortnogonality relationship applicable to Legendre's polynominals 1is
1

Py(cosd) Py(cose) d(cosg) = 0 , m=n (3.74)

-1 2
2n+l B * D

Noting that Po(coso) = 1 and Pl(cosw) = cos¢, and evaluating Eqn. (3.73) 1in

accordance with £gn. (3.73) gives the following equlllibrium condition.
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Tne zZgns. (3.00) are compatlble aue to zqn. (3.74). Solution of Eqns. (3.00)

ylelds the followlng constants of superposition.

(22+2n-1+2V) e + (a+1) (nZ-n=2-2v) "

3
a = 3
o=l 2 (n=1) [a+n+l+(2n+l)v] RE2
(n = 2,3,4,...) (3.76a)
£9 4+ n
b_i_z = 3 s L ,a =0, 1, 2,...) (3.760)

2 [n"4++1+(2n+1) V] Rn

The coefflicients of superposition a_ys 25 and b_, remain undetermined
Decause tne stress flelds vanisn fcr the component solutions EA_1], [A;Zj,anq

LB_1]. The solution to the problem characterized by the boundary conditions

glvén in Egqns. (3.63) is

_ :: g ® - (3.77)
(sh= T aaglag gl & 67, (8,

in Eqn. (3.77) the constants of superpositlons are given by Eqn. (3.76). The
coefficients gﬁ and ng appearing in Eqns. (3.76) are determined from Eqnsf
(5.65)7 The component solutions [A:n=1] and [Bﬂnn1] may be determined from
Eqns, (3.46) and Egs. (3.53). The solutlon given by Eqns. (3.77) 15 the same

as tnat determined by Sternberg, Eubank, and Badowskl).

3.4 Solution to Specific Elasticity Problems for a Sphere Subject Lo

Axlsymmetric Surface Displacements or 3Surface Tensions

The results of Sections 3.2 and 3.3 will be used to determine elastic

soiutions for a sphere, subjected to 4 number of particular boundary

( sl~ l" 3 Ve ;- - ‘.“f.‘{."{' ¢ "A,‘ ‘n'. N ) ..‘ V‘\\"‘ J. "

B L I B PSS P R R N o, . AERRS w .
'.‘9‘:’0‘.0"’:" K .0'0‘.0. Yoty a"., q’n A SN ¢, !'0':0. W Wy S VNV R TR A '.I‘r"nls 4 ‘I..':'.‘l 1A '..:.‘. L .’
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20nalLions. The douncary 20nalilons Wnicn wi.. D€ consldered fOor tne spnere
are as rfoirlows:
. Tne surface dlsplacements resucstilng from tne contacts Wlin LWoO
adJjacent spneres along an axis of symmetlry.
2. The surface tractions resulting from the contacts wiln Lwo adjacent
spheres along an axis of symmetry.
3. A uniform radial pressure appliled over the entire surface of tne
sphere.
The bounaary conditions llsted above satisfy the restrictions imposed on the
general solution given in Section 3.3. Therefore, the results of Section 373
may be used to determine solutions to the problems characterized by the
boundary conditions listed above,

3.4.1 Solution when the Surface Displacements, Resulting from Three Sphere in

Contact Along an Axis of Symmetry, are Known

The surface displacements on the region of contact resulting from pressing
two spheres together are provided by Hertz contact tneory. It is assumed that
tne surface displacements on the region of contact, parallel to the region of
contact, are negligible. The surface displacements perpendicular to the
region of contact, for the case of two spheres 1n contact, are given by Egns.
{3.21).

Three spheres 1n contact along the axls of symmetry are shown 1n Fig. 3.7.
The displacement, U for the region of contact 1s assumed U0 be given Dy
Hertz contact theory, Therefore, Eqns. (3.21) are used to obtain tne

following displacement boundary conditions for the center sphere shown 1n F1g.

3.7.
2
3 (1-
u, (R, cosd) = "S“§‘l£ [Zaz-stin2§],
8 a” E
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e
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2
u, (R, cosd) = éﬁi:%-lz (222 - Rz sin2¢],
8 a~ E

(MT=0"<od<mM . ... ... .. (3.77b)

m
[ ]

where total force transmitted through the contact

'Y
L}

radius of the region of contact

©
(]

angle defining the region of contact

=)
[ ]

radius of sphere

m
[}

elastic modulus

Using Eqns. (3.25), the spherical displacement components, up and u,. are

¢°
uy = u, cos (3.78a)
u¢ = u, siny (3778b)

The boundary conditions given by Eqns. (3.77) and the development
components in Eqns.(3.78) can be combined to yield the following boundary

conditions in terms of the spherical displacement components, U and u_.

(=3a-v4)F
3 a'E

u, (R, cos¢) = (3.79a)
3(1-v3)F

3 (2a2 - R23in29] cosd,(m - 3' < ¢ £ m
\8 a” E

(2a2 - R23in29] cos¢, (0 £ ¢ <¢ L

'3(l-v2)F
8 a” E
uy(R,cos0) -{ (3.79b)

ful;_vzll [2a2- R%sin26] sind,(n - ¢' £osm
8 a~ E

[2a2 - R23in¢] $in9,(0 < ¢ <o )
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To determine the displacement, strain and stress fields for a sphere whose
displacement boundary conditions are given by Eqns. (3.79), it 1S necessary to

evaluate the constants 5: and nz given by Eqns. (3.61). 1In this case, these

constants are given by

2 cos(m=¢"')
Eu o 3(20+1) (1-v ) 2 2
n 3 [2a® - R®sin®] cosd P (cosd) d(cosd)
16 a” E n
-1
1 I |
- f [2a° - R"sin"¢] cos¢ P_(cosd) d(cos?)
cos¢'] . e . e « o o o o« « . (3.80a)
os(m=¢"')
2 '
n% = 3(2“+1)(1‘§ )E | . [2a® - R%s1n%$] sin?o P_ (cos)d(coss)
l6n(n+l)a” E -1
1
+ [Za2 - stin2¢] sin2$ P; (cosd)d(cosd)

cos¢']. T < - 01}

The expressions for the constants given in Egqns. (3.80) may be simplified
since the functions contained in the integrals are odd or even functions,
depending on the value of n. These functions are odd for an odd value of n,
and even for an even value of n. Therefore, the constants £§ and ni, will be

zero for odd values of n. In view of this the constants are given by

1
2
u -3(4nt+l) (I-v)F 2 02.:.2
&2n PR [2a%-R%sin“P] cosd P, (cos®)
cosd'

d(cos?9), (a = 0,1,2,....) . . (3.81la’

1

2
nd . 3(4n+l) (1-v)F [2a2-R25in2¢) $ia2¢ P} _(cosd)

-0 l6n(2n+l)ajt

cosd'

d(cos9), (o = 1,2,3,....) . . . (3.81b)
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Evaluation of the integrals contained in Equs. (3.81) yields the

~

u
and nZn.

following expressions for E;n

[ % o
e %

~u -;ﬁ;-vz)F (Za‘-Rz)sin‘¢' + Rz(l-cosa¢[L

3 . . (3.82a3)
8§ a E 2 4

by ~

p 2 .2 : (2n+1)P (cosd"')
Eu - M {[zsin%l - 1] M
8 a” E

=5

(4n+1)P2n(cos¢') 2nP2n_2(c080')

';‘:‘; * e e C T (en-D)

‘ 6P2n+4(cos¢') 6 cos¢’ PZB+3(cos¢')
. § ~ Go+7) (bn+5) (4n+3) * (4n+5) (4n+3)

[ - P (COS¢')
nY 8 2., 2n+2

5 +3 l GotT) oLy~ o8 ¢ ] (4n+3)

P
3., 18 cos¢' 2n+1(cosd')
* [°°’ ¥ - (4n+5)(4n-l)] '

™ OEe

(4a+l) P, (cosd')
+ 6 [ cosz¢' - 6 ] 20
(40+5) (4n=3) (4n+3) (4n-1)

2 xR

18cosd’ _ 3, '

[(4n+3) (4n-3)~ 8 ¢ ] Pyp-1(c08¢’)
7 : 2,,] Pan-p(cos®")
2 * 3 | o3 (en=sy ~ o8 ¢ (4n-1)
§i 6 cos¢' Pzn_3(cos¢') ) 6 Pzn_a(cos¢')

(4o-1) (4n-3) (4n-1) (40-3) (4n-3) § °

3
')’

(n=1,2,3,....) . . . . (3.82b)

’ 4%, ? " (] RIRHAICUT W AR NN (AW A B NN
X “':!..,'Q‘.fi'.‘ :J‘gv_l',tl.?t‘,‘t'. l':,l'q" '\‘i'tf"u‘“-’."’ ! »ﬂ "e'.'.l_"‘ L3 "O,"’
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2n 8 a3 £ (2n+1) (4n-1)

{[2$in2¢'-l][P2n_2(cos¢')

2 P2n+2(cos¢') . 2 coso' P2n+l(cos¢')
(4n+3) (4n+l) (4n+l

- P, (cosd")]™

6 2., '
*‘[ ant3) (bn=3) ~ o8 ¢ ] Pon(cos®’)

4 (4n-1l)coso’ Pzn_l(cos¢’) 2, 6
(4n+l) (4n-3) M [°°s ¥ - T D (4n-5)]

2 cos9' B, .(cosd') 2P,  (cosp') }

Pon-2(c089) + (4n=3) * = Gn3) GGa=D)

(2a+1)?’ o XIS EXER e e & e o o o @ « e . .

The general solution [S] given in Section 3.3 may be modified so that
it does not include the zero terms which occur for odd values of n.
Then, the solution to the problem characterized by the boundary condi-

tions given in Eqns. (3.79) is

x - -}
u u
(51 = I g [Agpql+ I by g [Bpp,l (3.83)
n=l n%o

. u u
The constants of superpositiomn, a 2n-1 and b-Zn-Z’ are given by

Gl (20+5-4v) €2 +2(20%+3n-1+4nv)n> ]
a., = an 20 (3.84a)
-2n-| [6n+l - 2(4n+l) V]
~d u
pY - G[QZn * 20 n2n] 3.84b
_Zn_z [6n+l-2 (4“"‘1)\)] 3 e . . . . . 3 . . . . . . ( . )

. KR NANBNBNPANRE] ) OOMIONONEND
KO OUER RN ?"\',“he“-Y?"it“ls"i,‘.l(‘.!1"!;“",“-.
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The component solutions, [A_, _,] and [B_, ,], may be determined from
Eqns. (3.46) and (3.53), respectively. The component solutiom [A-Zn-l]

is given by

26 U,

L]
'
~N
[ <]
O
4

zn . . . . . . . . . . . . . . . . (3085‘)

. 2n-
ZGU¢=-sxn¢O Pz'n...............(3.85b)

e e e e 4 e s e e e e e e e e e e s e (3.85)

26 € = 2n(20-1)0>272

00 L (3.85d)

2n-2
26 €y = P7 T[Py ) - (20-1) Byl .o w ... .. (3.85e)
2a-2
ZG eee - = p Pén-l. . . . . . . . . . . . . . . . (3.855)
2n-2
26 €,y = - (20-1) sind0 " By . ... ... ... (3.858)

€¢e = 0 e o 8 s s e a4 o s s e s & ® s F s s e o (3.85h)

eeo = O . - . . . . . . . . . . . . . . . . . . . (3-85i)

-2
Tpp = 2a(20-1) 0% 2 p L (s

N 2n~1

- 2n(2n-1) P2 ] v v o v v o o« (3.85k)
2n




o] P oZn—Z Pl

ee zn-l . . . . * . . L] . . . . L] . . . . L] (3.851)

-, 2 = - 2n=-2 : '
’;?} O'o¢ (zn 1) Q 31n¢ Pzn 3 . . 3 . . . ] . . . . . (3. ssm)
v

¢6-° (3.85n)

ap . . . . . . . . . . . . . . . - . . . . . . . . (30850)

Q
[ ]
o

The component solutiom [B 2 2] is given by
- n.

2n+1 P

G u - (2n+1)(2n=-2+4V) p I I IR (3.86a)

26 u¢ (2n+5-4V) 02n+l sind P'Zn . (3.86b)

ua = 0 * e & e *« o e e e & 5 & & e s & e e+ e ¢ s (3.866)

- (20+1)%(20-244V) %% p

=2

ZGEQO- 2n * * t o+ e e s o o o . (3.86d)
&: 2n 2

26 €, = = P [(2n+5-4v) Phoer - (20+1)[(2n+1)
i
. + 2(a+1)(3-4V)] Pzn] C.. (3.86e)
o
o 2n
E 26 €gg = - P [(An#B)(Zn#-l) Py, = (20+5-4Y) P'2n+l]‘ . . . (3.86f)
oo 2n
X : 26 €gp = | 4n(a*l) - 1+2V 10 " sind Ph, . . . . . .. .. (3.86g)

DAOAND d M K i RO BN AN O ESONONG
q&“’/“"“. v"“.f 1"". " r"‘v'?“,"-"t“ tt"c"“'uﬁi'."ﬁ.“:."*..‘.."".m."‘."ﬁ“'é‘v" N



W &3

x<r kS

-

YR

=t

Ty

]
»

)

L 224
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a@e =0, e e e e . . . . . (3.86h)
Eep = 0 . . . . . . 3 . . 3 3 . . . . . . . . . . . . . (3-861)

6 = - (2n+1){(2n+1)(2n~2) - 2v] 2a P (3.863)
pp p 2n L] L ] L] L] L] [ ] [ ] L ] J

Q
[}

o0 an[(2n+l)(4n2 +100+7-2V) P2n+(2n+5-4V) Pén+l] . (3.86k)

Tgg = Dzn[(2n+5-4V) Pén+l - (48+3)(2n+1)(1-2v) PZn] . . (3.861)

Ggp = (4n’rbn-1+2 ) 0™ ain® RS . . . ... .. ... (3.86m)

g¢e'0...o.-......-........-.o(3.860)

Gep 2 0 . i it e e e e e e s e e e e e e e e s e (3.860)

3.4.2 Solution when the Surface Tractions Resulting from Three

Spheres in Contact Along an Axis of Symmetry are Known

The surface tractions resulting from the coutact of two spheres

are known from Hertz contact theory. On the contact surface, the
normal stress is known from Eqmn. (3.18). For the problem of three i
spltieres in contact, as shown in Fig. 3.7, it is assumed that the normal |
stress on the contact surfiaces are given by Eqn. (3.18). Therefore,

the stress boundary condition is given by

Ol QL) 0 i OO s L
e ‘!-'*‘n":":""u"‘:i"d.“*.°:'.‘:""0"’l"oa“."':o'
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3RE [cosz¢ - cosz¢'] )

2Ta

¢ (R, Cosd)
pe

V<o mo<d<m ... (3.87)

where F = force transmitted through the contact

a = radius of contact region

¢'

angle defining the regiom of contact

R = radius of the sphere

In order to use the solution developed in Sectiom 3.3, the stress
components on the surface of the sphere, Gpo and ¢_,, must be

pd

determined. These stress components are givem by

2
cOO g,, €08 D v o e e e e e e e e e s e e s . (3.88a)

cp¢ = Gzz sln¢ c°s¢ L] L] L] . L L] L] . L] L] L] L] L] L] (3. 88b)
From Equns. (3.87) and (3.88), the desired boundary conditiocans are given
by

1/2

GDO(R,cos¢) = -3R§ [cosz¢ - cosz¢ ] cosza,
2Ta

(0O ™o <o<M. . ... . (3.89)

1/2

3RE (cos?d - cos?s'] sin¢ cos¢ ,

(R,cos0) = 3

o
o¢ 2Ta

(0<o<o'smdp<d<T). . . . . . (3.89)

YA OGO QAR O (SRS D GA0AGMIACANAONNNLAYY
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B
=
ﬁ To determine the displacement, strain and stress fields for the inter~
ﬁ ior of a sphere whose surface tractions are given by Eqms. (3.89), it
I )
" g o .
is necessary to determine the comstants, gq and ng, given by Eqns.
! (3.65). For the boundary coaditions in Eqns. (3.89), the comnstants are
(YN
5 given by
& cos(T=¢')
2 1/2 2
g EU - - 3QntDRF [cosz¢ - cos“P'] cos“9 Py (coso) d(cos9)
™ n 4n 33
-1
1/2
ﬁ + fl [coszd; - coszqn'] cosch P, (cosd) d(cos )
':: coso'
[ %
N (R = 0,1,2,0000) « o ¢ o o o o« » +(3.90a)
K
cos( =¢')
g 2 2 M2
‘EQ n’ . 3(2oth)RE [cos 9 - cos 9'] sin " dcosé PL(cos?®) d(cos?)
n 4n(n+l)Ta
! -1
1
+ 2 2 1/2 2
E f [cos“d = cos™ '] sin Cbc:osq)Pt'1 (cosd)
! cosd’
d(cos® | (a =1,2,3,...) . . . . .(3.90b)
i
"&":’
::- The above integrals for 5?1 and ng may be simplified since the functions
contalned within the integrals are odd or even functions, depending on the
E value of a. These functions are odd for odd values of n and otherwise even.
vy Therefore, the constants 5?1 ana ng may be determined as follows
v
P—-
&
"
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1
-~ 1/2
53 = :QLZEi%lEZ [cosz¢ - cos“p'] cosz¢ P,(coso)d(cosd),
-n 21 a
coso'’
(a=1,2,3,....) . . . (3.91a)
1
1/2
ngn 2 3(20+1)RF [cosz¢ - cosz¢'] sin2¢ cosd Pén(cos¢)d(cos¢),
2n(n+l)T a ‘
coso'

(o =1,2,3,....) . . . (3.91b)

Evaluation of the integrals im Eqns. (3.91) yields the following

. (o} o}
eqations for EZn and n2n'

_ 3., 7 4
52 =3FR [sin o) + cos ¢'sind' cos ¢' n l+sin" ] .(3.92a)
4 8 8 coso

o

0 JGmDIFR o (-1)%(4n-2m)
n - on 23 o 2%%ni(20-m) ! (20-2m)!
2 (m=-m+2)
~sind . __ (20-2m#2)!cosg’ ln( 1+sing'
(2n-2m+4 Zz(n.m+l)[(n-m+l)!]Z(Zn-2m+4) coso’
n-m 2
+ sing' T (2m=2m+2) ! (k!) cos¢'2(n_mrk+l) ,
(Zn-2m+4) o 22D [ (1 ey ¢
(@ = 1,2,3,0022) « v v v v . . .(3.92b
n .
0 . (20-2) '3FR {Zn T (-l)m(An-ng! sin¢'’
2 2m(2n-1)ta’ w0 2200l (20-m) ! (20-2m)! | (2n-2m+1) .

e i,
i L,Hﬂﬁgﬂﬂaﬁﬂfh*
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&( 2 (n~-m+l)
- - (2n-2m+2) ! coso’ 1n (lﬁing’)
y 2=t Dr 1) 112 (2n-2mt1) cos¢

‘o

b _; _ n-m 2 2 (n-m=-k+1)

N gc sing' g (2n-2m+2)! (k!)” cosg'

. (2n-2m+1) o 22(_:x-m-k+l-)[ (L) 1 ]2 (2K4L) ¢

=

¥ - (1) (4n=2m=4) ! sing'
L + (2n-1) z
g’ 22(@=1) 1y 0nem-2) 1 (20=2m-2)1 | (4B=2m-1)
m=0
b
: 5 . 2(n-m)
K} + sing' (2n~-2m+2) (2n-2m+2) ! cosd’

- -
- -

w2

(20-2m+1) (2n-2m-1)cos ¢’ 22O~ 10 1)1 X 2n-2m#1) (20-22-1)

S 1q [Ltsind'\ _(2n-2m+2)sing’ ot
cosod' (2n-2m+1) (20-2m-1) K=o
. a 2 (n~m=k+1)
. - t ' ! - !
: E-*{ (?Enf:fiilfk ) coss + Zr(‘zziliv! Sn 7
N [(n-url-l)!] (2k+1)! nFL): o
g (n=1,2,3,....) « . . . (3.92¢)

e

The general solution [S] given in Section 3.3 may be modified so that

it does not include the zero terms which occur for odd values of n.

DA

Then the solution to the problem characterized by the boundary condi-

tions in Eqns. (3.89) is given by

[--} O' = -]
(S] = & 2-2n-1 Bgpgl * ;¢
=l n=0

bO’

—2n=2 [B_pn 5] (3.93a)

(4n2+4n-l+2\)) Eg + 2(2n-1) (2n2—n-l-\)) ngn
e« o« o« (3.93v)
2(20-1) [4n2420+1+(4n+1)v] R222

c =
3.2n-2

s rAx 22 Y
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N
o} g
ll ..+ 2nn
bg , T 22n 20 > e e e e e e e e e . (30930)

s e 2[4n +20+1+(4nt+1)VIR"
[]
o™
gg The component solutions [A¥2n-l] and [B_Zn_zl are given by Equs. (3.85)

and Eqns. (3.86), respectively.

o

%3 3.4.3 Solution for a Sphere Under the Action of a Uniform
Eﬁ Radial Pressure
4
A sphere subjected to a uniform radial pressure is showm in Fig.
.
Ij~ 3.8 . The boundary conditions for this sphere are
G |
|
b = - W . L L] » L] . L L] . . . . * - - :
GOO (R,co8¢) Uu ,(0 ¢ <) (3.94a)
Fz
X
GO¢ (R,cos¢) =0 I I 5 Ty & -7 M)
&8 where 9, the magnitude of the uniform radial pressure
- . . . . ‘
o To determine the displacement, strain and stress fields for the problem '

characterized by the boundary conditions given in Equs. (3.94), the

L o g
& constants En and N must be determined from Equs. (3.66). For these

; .. ) .
§§ boundary coaditions, the constants En and ng are determined as follows.
i\
i~ 1
' g _ =(2n+l
Er & '--—E——l 0, Palcos®) d(cose) ,
3 ™

N (= 0,1,2,0000) « ¢ « v o o o« (3.95a)
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=0, (@=1,2,3,....) v v v v i e e e e e e . .. (3.95D)

Evaluating the integral in Equns. (3.95) yields the following for the
constants , and a’

g .
Eou s - c“ ¢ e 8 o e 8 e e ® & & & & s 5 s e s e o s . (3.96‘)

u
a ’0 s (n’ 1,2,3,-0..) LI} LI} . *® o e e e »

1 Q

. . (3.96b)

o)
u

nn = 0 [ (n = 1’2,3"...) . L] L] . . L] L L L L) L] L] LJ . (3.96c)

8522 A - - S R -

.

In Eqns. (3.96),the superscript g, has been used to denote that the

"~

constants were determined for the case of a uniformly applied pressure.
ag g

The Eqns. (3.96) show that Enuand nnuare equal to zero for n 2 L.

B

Due to this, the solution [S] reduces to

=3 >

(Sl =b 5, [B ol o v v v v v v v v i v v s o (3.97)

" g
,:‘E where b a2
R -2 2(1+)
: Y
B
The component solution [3_2] is determined from Equs. (3.54). Substi-
;j tuting solution [B-Z] into Eqn. (3.97) yields the following displace-

ment, strain and stress fields corresponding to the solution [S].

L . -

(L-2v) g,P
% Uy ® = TZGMIRV) "ttt ot ot e e e e e e e w e (3.98a)

ﬂ‘ﬂ,~ ()

¥ (] . 3
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E

U¢ = 0 . . . . . . . - . . . . . . . . . . . . . . . . (3-98b)

ue = 0 oooooooo ¢ & o 8 e s e ¢« 8 v o o & e o (3.98C)

WTEN
D

-(1-2v) 9
op 2G(f+;) e o e o & o o s s e & o o o & o & o (3.984)

™
"

-(1-2v) %
oY) = 2G (1) e s s e 4 s s 6 s e s e e e s « + o . (3.98e)

=23

-(1-2v) o
gg ™ 2G(1+V) T T T I e . . (3.98f)

=5

==

= 0 [l . . ¢ & s o 0 = 5 » o e e » (] L * . L . . L] 3'98 )
€o¢ | ( g

Rk

oo >0 S T (3.98n) H

E = 0 . ] [ . . . . 3 . * e ¢ s & o & s s 9 . . . . L] (3-98i)
8p

P
™
[ ]
o

QQ u- * o e s e e o s & & o o & o (3.981)

53 S 2

°¢¢"Gu' ....... e e e e e e e e e e e e . . (3.98k)

LR

cee = = ouo ] 3 . . 3 3 . . . . 3 . 3 ] . . . 3 . . . . (30981)

} 20

Gp¢ B0 Lt e e e e e e e e e e e e e e e e e e e e . (3.58m)

¢6'° (3.98n)

ep = 0 ¢ o ® ¢« &+ e & & & & o+ ¢ e s 2 s s & e o s s (3.980)

1 : LNV OULOLO G0N S ACACASIOOOBOMOAC AN AT A TR UGN S X A NN M)
i"’u!"..“n;i SOOI L G B b ST TG T T "'Y‘.-f'."‘."‘.v“."'-:"‘o".o".i".o DAL A AT
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The solution given in Eqmns. (3.98) may be verified by am approach other
& than Boussinesq's solution in two harmonic functioms. For a sphere
k o subjected to the boundary conditions given by Eqmns. (3.94) there will

be an infinite aumber of possible axes of symmetry passing through the

-

o I, origin. Due to this symmetry the displacement strain and stress fields
'l

: g; will be independent of the spherical coordinate directioms ¢ and 6. In
L]

»

' view of this symmetry the displacement components are given by

ix

§ o

k)

' u 'u (p) . L] . o L] . . L] - . L] L] . L] L] L] L] . . . L . 13'99 )
g & o "% - e
4

-
‘-

e s -2 1))

. -
‘;"i“
©

. "

=)

<D
"
)

(3.99¢)

4

¢

From the strain-displacement relationships given by Eqns. (3.34), the

e e
R

-
- '

strain components are given by

at

0

R i

:: ‘d Epp = TE e o & e e & e 5 & & o e o e 0 e s e . e (3.100&)
N °

:l b l.tp
"' €¢¢ = ? 3 L] . . L] . L] L) . . . - . . - . . . L] . L . (3. loob)
B

Yo

L% ;.t Eee - T ® & ¢ + s a2 e e+ s 8 8 8 e & & s 6 e s s s (B-IOOC)
AR

W

.‘ .

[/ -

f :p¢ = 0 . L] L] - - L] . L] - . . » L] . L] . . L] . L] . (3. lood)

N

:. B €¢e = 0 ® o & & s & e + e s + e 8 & s e e e e s e e o (3.1002)
L -

q

I . . . - - - -'- -
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= 0 o . . .« o ; . ¢ s e o o . . . . . . . .« e . (3-100f)

From the constitutive relationships given by Eqns. (3.37), the stress

components are given by

coo = (A+2G) eoo *Meoo eee) O & I [} Y
°¢¢ = (A+2G) €¢¢ +A(eee+e ) . o e e e .« « (3.101b)
O9g = (A+2G) €96 +X(epo+ €¢¢) e e e e s s e e s e e . (3.101c)

oow = 0 . . L] . L] . . - . . L] L] * . . . L] * L . . - . (3.101d)

0¢e = 0 . . . . . . . . . L] . . . . . L] L] . . . . . . (3'1013)

cep = 0 . L . . . . LJ . L L] . * . . . . . L] L] L . L . (3. 1015)

For the case when the stress components are functions of the spherical
coordinate 0 only, the differential equations of equilibrium, ia the

absence of inertia and body forces, reduce to the following

do 20 o] of

20 e 8 B ... ... .. (3.1022)
o] P
O¢¢ - cee = 0 e ¢ e t e s e & 0 e e s 2 4 & s & e s e (3-102b)

Combining Eqms. (3.99), (3.100), (3.101) and (3.102) yields the follow-

ing.

R oo ‘. N OVONOVON TN . LA <y LA A, YN e B Ay
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n O

d‘u du
ol , 2 p 2
T = T "5 Ua =0 0 0 . . e e e e e e e e e . (3.103)
dD 0 do o2 o]

The Eqn. (3.103) is a linear, second order, homogeneous differential

o

h4

equation which is solved for the displacement component, uy Solution

of Eqn. (3.103) given the following for u

)] p.
> A
’- U =a P e2 (3.104)
o Al o . . . - . . . . 3 . . . . . 3 . . . - .
-N:
l\.
)

where A1,A; = constants to be determined from the boundary conditions.

Combining Eoms. (3.100), (3.10la) and (3.104), the stress component,

1:;\
o id given by
4
o = (3A+2)a +38 : . (3.105)
5y pp ﬁ 3 % L] . . L] * L] . L] L] L L] .
Y o]
£
l! The Equn. (3.105) shows that in order for the stress, opp’ to remain
finite at the origin of the sphere, the constant, Ajp, must equal
§§ zero. Applying the boundary condition given by Equ. (3.93a) to Equ.

(3.105), the constant A; is givem by

-Ou
U - ——
o Al "GRGy ottt e e e e e . (3.106)
o
y -__Z\L
" where A (1=2%)
it
.
‘ Substitution of Eqns. (3.104) and (3.105) into Eqmns. (3.100) and
b
:ﬁ (3.101) yields the following displacement, strain and stress fields.
%

KB e, DA O A pt I OO, ¥ O OGN e 2 5 Y XIS O oy .t OOORONGS
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0 = '3575;;3"0 e v e e a e e e e e e e e e e e e (3.107a)

u = 0 . . L] L] L ] [ . . L] L] L] L] * . L] L] . * . . » » - . (3. lo7b)
]
ue = 0 . L] . *® & e e & & 8 58 5 9 & s g (3.1076)
-(1-2v)g
u

Epp = —EETE;KS-.° e I L Y LY

-(1—2v)cu
¢¢=—m. e s s & 8 e e s s e e s e e e e e e (3.107e)

...... . (3.107€)

o =0 oo e e e e e . « o o .. . (3.107g)

€40 0 vt e e e e e e e e e e e e e e e e e e e . . (3.10m)
Eap =0 . v s e e e e e ¢ o e 0 e e e e e e oo o. . (3.1071)
O ™ Tyee e . . e e e e e e e . . (3.1073)
g,, = =0

. . L] . . L] (3. 107k)

. (3.1071)

"0 . (3.107m)
jol] .
B S o o WO
a v e e T S e e e S S
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(
E& 111

. o« . (3.107m)

eo = 0 . . . . L] . . L] L] . . . L] . . . . . . . . . [ . (3. 1070)

R i

The solution given by Eqns. (3.107) is the same as that obtained from

2~

the Boussinesq sclution in two hQrmonic functions. The Boussinesq

B

solution is given by Eqms. (3.98).

Eb
r
3.5 The Elastic Sphere in Contact with an Arbitrary
o
;ﬁ Number of Adjacent Spaeres

In this section, superposition will be used to obtain the dis-

o

——

placement, strain and stress fields for a sphere in contact with an

arbitrary ocumber of adjacent spheres.

In the remainder of this Section, temsor notation will be employed
since it provides a convenient way to express temsor transformations.
The following rules regarding tensor notation will be followed.

l. A superscript denotes a contravariant tensor

2. A subscript denotes a covariant temsor
- 3. A repeated index implies summation from 1 to 3.

Superposition of an arbitrary aumber of contacts on a sphere will

- require the use of local and global coordinates systems. Local coor-
'y

dinate systems will be required for each coatact pair, while a global
-:‘:
"o coordinate system will be used to reference the total solution. Local

coordinate systems set up for contact pair m are shown ian Fig. 3.9. 4

s

subscript m will be used to denote the local coordinate systems for

coatact pair m. The global coordinate system is shown in Fig. 3.10.

<es
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Also shown in Fig. 3.10 are the angles ¥y and 3,, which establish

the position of the local coordinate system, (xy, Y, 2Zp), relative

to the global coordinate system (x, y, z). The temsor notation which
will be used in defining the local and global coordinate systems is
listed in Table 3.1. Hats (") and overbars (~) will be used to denote
quantities referenced to local spherical coordinate systems and local
rectangular coordinate systems, respectively. The absence of these
symbols indicate quantities referenced to the global coordinate system.
The tensor components of the displacement, strain and stress fields
will be demoted by v;, ei; and Tijs respectively. The physical
components of these fields will be denoted by uj, €jj and T;

J'o

3.5.1 Tpflgsformation of Displacement Fields

The solution obtained for the displacement field resulting from a
pair of contacts is referenced to the local coordinate system, (il, iz,
§3). To determine the displacements relative to the global coordinate
system, (xl, x,, x3), it is helpful to first determine the displace-
ments relative to the coordinate system (;1,;2,;3). The two local
coordinate systems are related through the mapping.

-~ ~ -~

X, = x, siax, GOSXy o v e e e e e e e e (3.108a)

xz-ilsiuizsin%................. (3.108b)

x3 = xl cosx, e r e e e e e e e e e e e e e e e e e (3.108c)
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v FIX

a3

' .
A
2
o
g Tensor
Coordinates Notation Description

'T

: (o, 0, 8) (., X, X_) Local spherical
N @ o m 1r 2 3 coordinate system
) ('..
h ~
! (x , 5., z) (x,, x.,, x_) Local rectangular
I ’ ’ ’ ’
: :3 o o 1’2t 3 coordinate system
o .
E (x, v, z) (xl, Xy x3) Global coordinate
L~ system
&
A\
! Table 3.1
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The Jacobian matrix of the set of functions in Eqmns. (3.108) is given

by

p— q — -
Bxl Bxl Bxl

le 3x2 3x3 sinxzcosx3 xlcosxzcosx3 -xlsianSLnx3
9x ox ax

Bxl axz 8x3 sinxzsinx3 xlcosx251nx3 xlsinxzcosx3
3%, a§3 a§3

Bﬁl Biz 823 cosf:2 -xlsini2 0
L 4 L .

(3.109)

The base vectors of the coordinate system (il, iz, §3) with respect to

the coordinate system (§l, iz, 23) are given by
A 3-._
B, ® = &, . i i e e e e e e e e e e e e e e e e .. (3.110)

A

where b, = base vector in coordinate direction X

i i’
Ej = ynit vector in coordinate direction Ej'
.y
From Eqns. (3.108) and (3.109), the base vectors bi are given by
bi = sinx2 cosx3 ey + sinx2 sinx3 e, + cosx, e . - . (3.111a)

b2 = xl cosx2 cosx3 el + xl cosx2 slnx3 e2 - xl sinx2 3

(3.111b)

by = -ﬁl sinﬁ2 sin?:3 e, + % sin§2 cosi3 e e o oo (3.1110)

= 'I"\' »»
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The metric tensor is determined from the dot products of the base

vector as follows
gij=si‘8j..................... (3.112)
where §ij = component of the metric temsor

From Eqn. (3.112), the metric temsor is given by

1 0 0
i = o ap? 0 e e e e e (3.113)
ij
0 0 (21)2 sin? X5
o -

The temsorial components of the displacement field im the coordinate

system (il, iz, 33) are given by

G‘l (il’iz !£3)
\V 844

where vl = compounents of the displacement tensor

31(21’22’;3) = nosumon i . . . . . . . (3.114)

ul = physical components of the displacement

tensor

To determine the displacement components ;K(;l,;z,;3), the

transformation law for a coantravariant tensor of order 1 is used. This

transformation law 1is

o \ AN Wyt s
'o'.lp Oah "0 ¢ "l Y 'l." O. .0.0 ”‘l’g‘l’t‘b'.‘ ‘ ".A‘.'c’.. " '2"‘!‘ " '.‘ “'o' FOLOLOU ;.t"‘“ QUL “ '.l "o"'
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VR 3

(3.115)

From Eqms. (3.109), (3.113) and (3.115), the displacement components

—k(- - - )
v xl,xz,x3) are given by

N
, Ty =T el e e e e L. (3.116)
k
L4
i& The vectors and matrix appearing im Eqm. (3.116) are given by
*u
/ 1‘ \
a v a
{:. 1
_ Grea ) =4 e e e . (3.1172)
> -
- -3 -
[ - Y %3 )
£ 3 A’
.- {u} = ﬁ S T & IS 5 ¥ )
% 2
b
!! \ u3 4
+ LS
L/
‘.
h-' P A « N ~ A -
: - sinx, cosx, sinx, sinx3 cosx,
N ] i ) A A~ A A -.A
g -2 tTLr - cosXx, cosx, cosx, sinx3 sinx, . (3.117¢)
R -
[) . AN A
b L -sink, cosx, 0o
O
. _
L In Eqns. (3.117) the physical components u, are used in place of the
i > .
. tensor components v. Ina rectangular coordinate system, no distiaction
Wy
tl is made between the contravariant, covariant and physical components of

L]
1)
)
L
¥
’
¢
i

& a tensor.
*
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The global coordinates, <x1’ xz, x3) are related to the local coor-

dinates, (kX,, X, X.), by the mapping

1 2, 3
x, = coSBm cos wm X + -sinwm X, - sinBm cosy  Xq - (3.118a)
x, = cosSm sin Y x, + cosy_ x, + sian siny_ X, - (3.118b)

X3=—sin8mxl—CosBmK3..............(3.118C)

The Jacobian matrix [J] of the functions in Eqns. (3.118) is given by

p -
cosBm coswm -sinwm. sinem coszbm

[J} = cosBm sinwm coswm sian sinwm e oeo. (3.119)
—sinBm 0 cosem

The displacement field in the global coordinate system may be determined
from the transformation law applicable to a contravariant tensor of order

one. This transformation is given by

. . oax.
i =j,;= = = i
T (xy 5 %,,8,) VJ(xl,xz,x3) Tao s e e e (3.120)

From Eqns. (3.119), the displacement components Vl(xl’XZ’XB) are given

by

(v} = (1] T3y o . G2

0.. {
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The vectors and matrix appearing inm Eqmn. (3.121) are given below

Vl Ul
bolado2t e fupp oo Gil22)
o3 as

vl )
5h=)52( = ) % . .. .. (3.1.2b)
73 3
cosf cosy. -sin¢m sinB_ cos¥
%Tg} = | cosB sinwm cosy sinB_siny_|. . . . (3.122¢)
-sin@_ 0 cosB_

In Eqns. (3.122), the physical cowponents of displacement are used
since no distinction is made between the teansor and physical compounents
in a rectangular coordinate system. When the displacement components
ui(il,iz,QB) are known, the global displacements ui(xl,xz,xz) may

be determined from Eqmns. (3.116) and 3.121). The displacement compo-~

nents ui(xl,xz,x3) are given by
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3.5.2 Transformation of Strain Fields

The solution to the strain field resulting from three spheres in
contact along an axis of symmetry is referenced to the coordinate
system (§1,§2,§3). To determine the strain field in the global coor-
dinate system, (xl 1X) 1%, ), it is helpful to first determine the strain
field in the local coordinate system, (;l’;Z’; ). The relation between

the coordinate systems (i x3) and (x,,x.,x,) is given by Eqnms.

2 1°72°73

(3.108). The Jacobian matrix [J] of the functions defined in Equs.
(3.108) is given by Equs. (3.109). The metric temsor of the coordinate
system (xl,xz,xz) with respect to the coordinate system (xl,xz,x3)

is given by Eqm. (3.113). The temsorial components of the strain field

in the coordinate system (x , X x3) are given by

2’
€, (% ,%,,%,)
~ ~ A i 2, .
(xl,xz,x3) . 1 1 3 ,nosomoniorj. .. .. (3.124)
Ve y 8
where gij = components of the strain tensor

Eij = physical components of the strain temsor.
. . . -ij,=- = = .
To determine the strain field e (xl,xz,x3), the transformation law for
a contravariant tensor of order two is used. This transformation law
is
Ix, &

-1 - - - A r A ~ A i i
e j(xl,xz,x3) = eklxxl,xz,x3) — T . e e e e e e e . (30125

Bik Bil

From Eqms. (3.109), (3.124) and (3.125), the components of the strain

-1f,= .
tensor, e (xl, 2 3), are given by
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The transformation matrix [T;] is given by Eqm. (3.117¢c). The

matrices [eij] and [Eij] are given by

el! @12z g3 €11 €12 €13
[Eij] =] 32! 322 23| .| & € £ e oo oo . (3.127a)
21 22 213
edl g% g3 € € €
31 32 33
€11 €12 €113
3 ~ ~ ~
['ij] =| g, €, €,, o« e e e e+ e+ . (3.127b)
€31 €12 €313

In Equ. (3.127a) the physical components may be used in place of the
lj]’

tensor compounents, since the strain teusor, [e is referenced to the

rectangular coordinate system, (;1,;2,;3).

The relationships between the global coordinates, (xl,xz,xz) and
the local coordinates, (;1,;2,;3), are given by Eqns. (3.118). The
Jacobian matrix [J] of the functioms given by Eqns. (3.118) is given by

Eqn. (3.119). To determine the strain field in the global coordinate

system, the following transformation law for a second order tensor will

be used.
etz x,x) = ¥ E %3 o (3.128)
l) 2! 3 e xl,xz, ] AT - . . . . . . . . . . .
oxk Bxe

From Equns. (3.119) and (3.128), the strain field eij(xl,xz,x3) is given
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The matrices [Tg] and [Eij] are given by Eqn. (3.122¢) and Eqn.

(3.127a), respectively. The strain field [e 7] is given by

11 e12 12 £

e e 1 %12 %13
ij 21 22 23
e ") =] e e e = €0 €2 E,, . . . (3.130)
Q31 g3z 3 e € e

31 32 33

In Eqn. (3.130), the physical components of the strain tensor may be
used as the temsor components since the strain field is referenced to
the rectangular coordinate system (xl,xz,x3). Combining Eqns. (3.126)

and (3.129), the strain field [eij] is given by
[efd) = 11517 11,17 CHRNC NG I C B E 1

The matrices [Ty], [Tg] and [eij] are given by Eqns. (3.117¢),

(3.122¢) and 3.127b), respectively.

3.5.3 Transformation of Stress Fields

The stress fields in the rectangular coordinate sys;ems (x., xz,x )
and (xl,xz,x3) are determined in the same manner as the strain fields.
Both the stress and strain tensors are secound order and will tramsform
in the same manner. Therefore, the results determined for the strain
fields in section 3.5.2 may be used to determine the stress fields in

x,) and(x TN ). From

the rectangular coordinate systems (xl,xz, 2

"""" Ny va¢~YVWw.‘v%

- ~ -
s, !. lv‘ l.‘ ’¢ 'ﬁ'ﬁ.“h‘.k "'.‘n 0.'. i A~‘0’l. A ..“'.o 0.0".0"..".0 ."‘.0 S u"'-'.‘o‘"-':. 0,9,0.00.50 s':‘o‘. U2 O ) g

------

123

ety
“.." u'. Dot




ﬁf 124
g L

) a:*

: "~ these results, the stress fields are given by

g

g i

) [?ij]-[TL]T[S I 3 5 T & J B )
-, 13

VIS

ot A

] o () e T gl L (3.133)

- The matrices (Tp] and (Tg] are given by Eqmn. (3.117¢) and Eqn.

(3.122¢), respectively. The matrices [?lJ] and (73] are given by

. -
2 -
RS
K>
,:: ’— 12 13- [-- - - -
n B T T T O11 912 953
‘ .21 .22 .23 - - -
, () =] % T T ={ g g g c e ee . (3.134)
- 21 22 23
- SIIE LN - - 5
T T
S - 4 L 32 33
A
8 ¢
! ﬁ r =y P -
11 12 13
)
) T T T 9, 9., 9.,
X +J 21 22 23 1 - N & I
e [(t™7] =] = T T 9., 92 9,4 (3.135)
u 31 12 33
T
b T - T 9 T2 933

AFSEE - |
{
L
]

5
N

P AS
P

In Equs. (3.134) and (3.135), the physical compoments of the stress

tensor may be used for the temsor components, since the stress fields
[ }J are referenced to rectangular coordinate systems. Combining Egn.
) > (3.132) and Eqn. (3.133), the stress field in the global coordinates
e e
[ (x1,%3,x4) is given by
o
i kS
r (3,1 = (11" 11017 (5,1 (L] (Tg] : .. (3.136)
‘. re ij G L ij L G « e . « s e
‘ :'J“
h L
I.
K- > The matrices [TL] and [TG] are given by Eqn. (3.117¢) and Eqmn. (3.122c),
- respectively.
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3.5.4 Solution for a Sphere with an Arbitrary Number of Contacts

The results of Sectioms 3.5.1, 3.5.2 and 3.5.3 will be used to
obtain the displacement, strain and stress fields for a sphere subject
to an arbitrary oumber of contacts with adjoining spheres. Restric-
tions which are imposed on these solutions are listed below.

l. The contacts on the sphere appear in pairs aloug an axis of

symmetry as showa in Fig. 3.9

2. The forces transmitted through the contacts are such that the

sphere is in static equilibrium.
Subsections 3.51, 3.52 and 3.53 provide the displacement, strain and
stress fields referenced to a global coordinate system. These fields
were developed for the case of ome pair of comtacts aloag an axis of
symmetry as appearing in Fig. 3.9 If a sphere has a number of these
contact pairs, the displacement, strain and stress fields resulting
from these contacts may all be referenced to the global coordinate
system. The displacement, strain and stress fields resulting from all
contacts are then found by adding the individual fields. Superposition
of these individual fields yields the following total displacement,

total strain and total stress fields.

T T (4
gl (@ .o GusT)

T ;~
(ol leg 1 (Tl [TG]m. c o v (3.1379)
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N w 12?
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Y a
k) o _c
.' & lJ 2 T T A
¥ (<7l e DMl IT (S0 Tl (Tg) ... .. (3.137¢)
N =1 m m dm m m
"L
- where n. = total number of contacts on the sphere.
::.
.F: ot
! l In Equns. (3.137), the subscript T is used to denote the total displace-
.'}' ’:J
:‘ ment, strain and stress fields. The subscript m denotes quantities
<+ N
'55 g resulting from the pair of contacts, m.
’
:,. 5 The quantities appearing in Equms. (3.137) may be put in terms of
G
. < the local coordinate system and global coordinate system shown in Fig.
LX)
41 BN . . . .
t:‘n 3 3.9 and Fig. 3.10 respectively. The total displacement, strain and
L J
L stress fields may be written as follows
o
.J-; ht
7
o b *x
,{: {u} = u . . . . 3 . . . - . . 3 . . . 3 . 3 . . . . (3. 138&)
O t y
<,I ' .nh_
Ex
R !. - -
J € € £
\ XX Xy Xz
& ij
) e = € € € S & P & 1:1-9)
::. o ™y vy vz
® €2x zy 22
. '.- s -
S
) _
M RS I g c
v o = Xy Xz
3 13
o T =] 0 oj oj e e s e e e s e e e e« oo . (3.138c)
I Y yx ¥y vz
1b .
N of g o}
:: “ - ZX 2y zz _|
Y .
..' ,’I
9 .
34 i
’5: In Eqns. (3.138), the global coordinate system (x, y, z) is referenced.
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the displacement, strain and stress fields resulting from contact m are

‘ ‘ given by

”
b .

o]
g twly = { g e e e e e e e e e e e s (301399)
:E 9] n
< [~
X 3 “o0  foo  Epo
~ I e £ e e e e e e e e e e ... (3.139b
R: (e ]m 80 o0 46 ( )
¢ Lsep 00 %88 | m

A .

’ ij -

h [E ]m U¢Q U¢¢ 0'¢e f e e s s s e e e e s e . (3.139¢)
. g g o

E: = Bp 8¢ 6o z

\N

" The fields {“]h' [gij]m and [3ij]nl are determined from the

Fa

results given in Section 3.4. These fields are referenced to the
< spherical coordinate system (Pp, ¢y, 85) shown in Fig. 3.9 . The

transformation matrix, ([Tgl, is given by

¥ B ! e N “
i: cos Py cosyy 51nwm s:LnBm coswm
.. [TG] = | cos Bm cos¥_ cosy_ sing  siny_ e e v (3.160)
4 -sinf 0
> m cos Bm |

The angles Bm and ¢'m define the position of the local rectamgular coor-

;3 dinate system, (xm,ym,zm) relative to the global coordinate system,
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(x, y, z). These angles are shown in Fig. 3.10. The transformation

matrix, [(Tp], is given by

31n¢m cosem sin¢>m sxnem cos®
[TL] = cosd  cosb cosd cosb_ =sind®_ | . . . . . .(3.141)
-sinem cosf 0
The angles &, and &, are shown in Fig. 3. 9. These angles are part

of the spherical coordinate system, (Ry, %, qn). They define a
point in the sphere relative to the local coordiante system, (Xgs Ym» 2m’
for contact m.

In order to evaluate the total displacement, strain and stress
fields at any point (x, y, z), the local coordinates must be determined
from the global coordinates. This is necessary since the solutions
provided in Section 3.4 are in terms of the local coordinates (Pg» Qm’ em)
The following equations are used to determine the local coordinates

(xp, Ym» 2p) and (pp, 6g, Op) when the global coordinates (x, y, 2z) are

known.
[ x_ cos B cosy cosf  siny  -sing [ ¢
m m o i} o a
ﬁ Ym ) = sim,um cosy_ 0 { v ». . (3.142)
\ zm‘ sinsm coswm slnem simpm cosBm oy

o =Vx2*y2+zz..................(3.1433)
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e v o o o o . (3.143c)

¢ R O x

0

o

o
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B

]
DIN

2]

. ym
’ sznem = (3.143d)
re 2 2
R X +vy
n m

A
W b 4

i cosem-—m—.....................(3.143e)
;. 2 2
Fp xm +ym

o

From Eqns. (3.142) and (3.143) the total displacement, strain and stress

fields may be evaluated for any point (x, y, z).
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CAAPTER 4

EFFECTIVE MODULI OF AN IDEALIZED SOLID ~ FLUID SYSTEM

4,1 Effective Moaull

The effective modull of neterogeneous materilals are those modull
refilecting the average stressmstraln properties of the materials. These
modull take 1nto account the properties and the geometry of all the phases and
thelr interaction. The effective modull are determined by considering a small
but representatlve sample of the heterogeneous materials. The size of the
representative sample is chosen so that the behavior of this sample does not
cnange when the sample size is increased. Therefore, the effective moduli
aetermined for the sample may be used to represent the entire neterogeneous
material. The two approaches that are used to determine the effective moduli
are volumetric averaging and energy methods.

4.,7.1 Volumetric Averaging Approach

The volumetric averaging approach derives effective material properties
by considering a representative volume element of the material. The stress or
displacement fields 1n this representative volume element are macroscopically
nomogeneous. The volume averaged stress 1s defined as

<g,.> =

1
1] 7 6 0} av (4.1)

wnere‘ <6lj> = volume averaged stress field
clJ = gtress field occurring in the different phases of the material
V = total volume of representative sample
In Egn. (4.1), Cartesian tensor notation has been used. This notation will be

useqa perilodically, and the rule that a repeated tensor iLaplies summation 1s

applicable. The volume averaged strain is defined as

5 ChGRL ALY RPN ACRLGCRTL PN C T
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W
i
g > a = c
; lj v JV Llj aVv (4.2)
- wnere <Eij> = volume averaged strain field
‘I
-
- Eij = strain field occurring in the different phases of tne
[! materials
)
Both of tne integrals appearing in Eqns. (4.1) and (4.2) are taken over tne
’41
“ . .
. representative volume of the material, The effective moduli are defined
2 tnrougn tne following equation.
044
o <o. > =C. . 4.
S 01J> cukn gLy (4.3)
g _ .
g? where Cljki = effective moduli tensor

Tne Eqn. (4.2) is the general anisotropic form of the linear, volume averaged,

-

stress-strain relations. In order to use Eqn. (4.3) to determine the

;i effective modull of a heterogeneous material, the stress and strain fields
"k

occurring ln all phases must be known and the integrals in Eqns. (u.j) and
! (4.2) performed.
e 4.1.2. Energy Methods
o

When using an energy approach, the effective moduli are determined

:E througn energy =qulvalence. A representative sample of the heterogeneous
. material 1S considered to be subjected to a macroscopically homogeneous stress
;é or deformation field. The sum of the strain energies for all the phases of
:: the neterogeneous material is then made equlvalent to that occurring 1n a
. aomogeneous material with modull, Cijkl' This relationshlp 1s given by
Y
G
) JJ eijcijdv-Qij> <cij)v (4.4)
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Wwhnere JLJ = 3Lress filela

1]

V = total volume of representative sample.

Straln flela

The volume averaged stress, <°1j>' and the averaged volume strain, <€1J>' are
determinea from Eqns. (4.1) and (4.2), respectively. Substitutlng Eqn. (4.3)

1nto Eqn. (4.4) yields tne followlng

, . dV = C_ . .. .
é olJ elJ d cljkl <elJ> <€k£> v (4.5)

Tne integral appearing in Eqn. (4.5) 1is taken over the entire representative
volume., As 1n the volumetric averaging ;pproach, the stress flields, °ij’ and
the strain fields, Eij’ mus; De known for the different phases of the
neterogeneous materilal before Eqn. (4.5) may be evaluated.

4,2 Volumetric Averaging Approach to Determining the Effective Bulk Modulus

of an Idealized Solid-Fluid System

The solia-fluid system to be considered 1s a heterogeneous material
consisting of a number of solid spheres i1n contact, surrounded by a fluid
pnase. Sucn a system 1S shown 1n Fig. 4.1, The following assumptions are
used in the determination of the effective bulk modulus.

1. The spneres contained in the system consist of 1sotropic, linearly

elastic materials.

2. The spheres contalned 1n tne system are in statlc equilibrium.

3. The contacts on a particular sphere occur in pairs, directed along an

axls passing tnrougn the spnere.

4, The surface displacements or surface tractions resulting from a pair

of contacts are axisymmetlrlic wltn respect Lo an axls passing tnrough
the center of the contact region.

5. The solia-fluid system benaves as an l13otroplc, linearly elastic

.- T W -
IR A P ¥ _,.a NI A AN A NI ATACH J-‘ "?"}
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-
gg materlal macroscoplcaziy.
. o. The void space between spneres 1n the system 1s completely fllled
. Witlh oniy one type of fluld.
ij For an isotropic, lineariy elastic material, only two materlial constants are
by
By
needed to relate tne force flield to tne displacement field. For thls case,
gz Eqn. (4.3) reduces to
& i )
v <o > = 2G < + > 4 u,
95 2G e > A <e L] (4.6)
x
;«
wnere <°1J> = volume averageq sStress tensor
o
.,
V) <€LJ> = volume averaged strain tensor
- G,A = effective Lame constants
“ = = lo l * J
°1j Kronecker delta 11, i= ]
Anotner relatlonship may be obtainea by contracting the i and j indices in
- Egqn. (4.0). This contracted form is given by
g’ <o, > K <e, > (4.7)
Y T 3 K<y ¥
Wwhere i g G 3
e 3 G + A
tne term K, appearing in Eqn. (4.7), is the effective bulk modulus. The
C; quantities <°kk> and <skk>, appearing in Eqn. (4.7), are determined from Eqn.
r (4.1) and (4.2), respectively. These quantities are given by
b
Fy <g > = 1_ " 4 8 )
o kk” TV L ke Y (4.8a
<g > L. v 4.8b)
>, KK v fkk @ (4.
o v
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e
b
SN
'
K| - wnere I . = trace of tne stress tensor
'. a

4 € , = trace of the strain tensor
Y <K
L
a
. V = representative volume

¥
N >
R - R .
P, ine Integrals appearing L1n Eqns. (4.3) are taxken over tne voiumes of both the
' .
A solid and the fluld pnases of the neterogeneous material. Due to this, the
pow

integrals appearing in Eqns. (4.8) may be rewrittien as follows.

=
e
AN

’
; <g,. > L ; S ) £ ]
NN KK T L7 o aV s g, av] (4.9a)
i v v
R - s f
1 . <g, > = -l- S £ i
PR ) £
.
} pj Where Vs = volume of tne solid pnase of tne neterogeneous material
O
‘. ) Vf = volume of the liquld phase of the heterogeneous material
' L]
r
" &i The superscripts s and f appearing in Eqns. (4.9) are used to denote the solia
- and fluid phases, respectively. Combining Eqns. (4.7) and (4.9), the
s
. following expressions for the effective bulk modulus, K, is obtained
8 8
D 1 . I w
. v oL fv Ok @V 6 S AV |
& '\.:: R <) f‘
‘: LS 3 = 1 s f (L‘o1o)
v LJ ¢ av + J € av | '
( v v kk v Kk
_,:‘ S f
o
:. .. To evaluate Eqn. (4.10) a representative volume of tne solid~fluid system 1s
- a
; considered. This representative volume 1S taken as the smallest possible
> :~ sampie whicn still exniblts the same benavior as the entire system. Due %o
"
A ] -
N this, tne effectilve bulx modulus, K, found by performing the integrals 1n Eyn.
A
.‘ i: (4.10) over this representative volume, will be applicable to the entire
) -
:f t, system. In getermining tne effective bulk modulus, K, the stress and the
>
) .
’ ' bl Y
" displacement flelds occurring in the representative volume will be considered
)
q{
!'
SYP
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where (o S

10 be macroscopicaily homogeneous.

Tne representdtive volume Wlli contain N solid spneres. The spneres are
consldered to be lsotPOplc, linearly elastlc materiairs. They may nave
different racil and material constants. These spneres constltute the solld
phase of the heterogeneous material shown in Fig. 4.1. In Eqn. (4.10). the

integrals taken over the solid phase of the representative volume are-written

as follows.

N
1 S 1 . s
s L _ S
N
l ° o oE v (4.11b)
7 é e AV =7 151 fvl (Ekk)l d a
s . s

kk)i = trace of the stress temsor for sphere 1i.

(Ekk)i ® trace of the strain temsor for sphere 1i.

in Egns. {(4.11) the 1ntegrals appearing ln the summations are taken over the
volume of spnere 1, V;. Due to the first four of the assumptions made
concerning the solid-=fluld system, the results in Section 3.3 may be used to
Jetermine (cki) and (e;k) . From Section 3.3, the solution. [S], to the

displacement, strain cr stress fielas for a sphere undergeing axisymmetric

surface tractions or axilsymmetric surface displacements are given by

(3] = a A 1+ L. b B ] (4.12)
Lo Bopertiop-gd L -n-2[ n=2" '
Nn=1 n=o
where {S] = solution to tne displacement, strain, or stress flelid
|
EAfn-1] = component solutlon to the alspiacement, straln or stress !
field

[B_n_ZJ = component 30iution to tne displacement, strain or stress

fleld
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a_ ., = constant of superposition

b-n—Z = constant of superposition

Tne component solutions, CA_n_1] ana (3 can be determined from Eqns

—n12J’

(3.46) ana (3.53), respectively. The constants of superpositlions, a_ -1

b—n-z’ are determined from tne sSpecified boundary conditions on the spher

- s _ S
Evaluating (ck ). and (ek

k)1 K)l corresponding to the component solution [A

=n

glves the following

s =n-1
(Ukk)l =0 (4.?33)
s A-.nﬁ'l
\ekk)l = 0 (u.?3b)
In Egns. (4.13), the superscript A_'nﬂ1 15 used to denote quantities which
determinea from tne component solution [A9n=1]' Evaluating (ckz)l and (¢
cerresponding to tne component solution [B_n;zj yields the following
. B-n-2 n
A =9
Lch)l - 2(n+1)(2n*3)(1+vl) p P (ufjua)
, Dn- (1=2v,)
(Ekk)l - (n*T)(Zn*3) __5:_—— PPy (u.?ub)
Wnere v, o= Polsson's ratio for sphere-li.

Gl = shear modulus of sphere 1.
o = distance from tne origin to a poilat in sphere 1.

in Egns. (4.14), the superscript B_n_2

from the component solution (B_ J. Combining Eqns. (4.12) through (4.1

n=2
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are

S
kk)i

is used to denote quantities determined

4)

3 s ) ,
ylelds the following for (okk)i and (sk )1' when there is one pailr of contacts

K

on sphere 1.
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s - n
(gqly =2 2 (b_n_z)i(n+l)(2n+3)(1-vi), Poovoe e e e (4.15a)

x

() =2 £ (b ) (n+el)(2043)(1-2v,) p" P . . . . . . (4.15b)
G. -n-2"1 i n

n=1
The subscript i1 is used on the constant of superposition, b-n-2’ since
its value will depend on sphere i and the spheres making contact with
sphere i. This dependence is shown in Sectiom 3.1 where the Hertz

" . . S\ S

contact problem is discussed. The quantities (okk/i and (ekk)i are

invariant with respect to coordinate directions. Therefore, for a

. s S .
sphere with M contacts, (0., ) and (€,) are given by

M,
.Y
s N - 2 n
(0 )y =2 L |+ T (b 2) (o+1)(20+3)(1+Vy) 0 Py
n=1 kel
(4.16a)
et
1 % k v.) on
(ekk)1 = (b_n_z)l (b_pap)y | (a+1)(20+3)(1-2Vy P,
i k=1
(4.16b)
where Mi = number of contacts on sphere i.

In Eqns. (4.16), the superscript k has been used om the constant of

superposition, b-n-Z’ since this quantity will change for the different
contacts, occurring on a single sphere. The constant of superposition,
B-n—Z’ results from the application of a radial pressure to the surface

of sphere i. Substituting Eqns. (4.16) into Eqms. (4.11) and perform-

ing the indicated integration yields the following
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et
N 2
L syl k 3
v %k v < 8m (b 2)i+z (b_n); | 4+ i)Ri
i=] k=1
v
s
(4.17a)
M,
=
N 2
1 s 1 & k 3
VoS Wy Lo | byt By [ (Am2v)Ry
i=1 1 k=1
v
s
(4.17b)
where R; = the radius of sphere i.

. . . . f . .
To determine the integrals involving Oxk and eik, which appear 1in Eqm.
(4.10), the fluid pressure in the representative volume is denoted as
= - f b =
. o] € o}
5,- The quantities kk and F,, are related to Oy by

e = 3 9, N TS £-T))

£ Cu
Ekk"[ — e .. ... ... .. (4.18b)
o)

where P = fluid pféssure
K¢ = bulk modulus of the flued

T = temperature

In Eqns. («.18) the fluid pressure, Eu, is interpreted to be a

compressive stress and therefore its magnitude is negative. This
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pressure is also a gauge pressure meaning that if the fluid pressure is

atmospheric, au is equal to zero. The Equ. (4.18) states that in
general, the bulk modulus of a fluid, K¢, is not comstant. It may
vary with the pressure and temperature. The lower limit of the
integral appearing in Eqn. (4.18b) indicates that the fluid will be
considered to be unstrained at zero gauge pressure. Henceforth, the
volumetric strain of the fluid, €ik, will be denoted by eg. Substi-
tution of Eqms. (4.18) into the integrals given in Eqn. (4.10) yields
the following.
L.
v

dv=3¢C_0. .. . . (4.19a)

B
Hh
[«

o e e o o . (4.19b)

;m
rh
rh

[
o)

Ve
o where Ceg = v
]
V = representative volume
hV
j: V¢ = volume of fluid present in the representative volume
2 - :
- Gy = fluid pressure 'in representative volume
-y
ef = volumetric strain of the fluid in the representative
t: volume
o
. The term, C¢, appearing in Equs. (4.19) is the volume fraction of the
1
1) -'. . . . . . . .
: x_ voids containing fluid, in the solid-fluid system. Combining Eqms.
]
&
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) ) (4.10), (4.17) and (4.18) given the following expressiom for the effec-

tive builk modulus of the solid-fluid system under consideration.

N,

u\: ~ —

N 2

. 1 - k 3 -
| - v < &m i ).+ I (b_z)ij' (l+vi) Ry +3C.0,
'y 3R =22t = wd (4.20)
\ i
) . - -
1 1 Y o | - 2 k 3
2 W v z E;' (b—Z)i + Z (b-Z)i (l—Zvi) Ri + Cf ef
. o i=l k=1

S

The Eqn. (4.20) gives the effective bulk modulus, K, of a solid-fluid

: *2 system composed of a number of isotropic, linearly elastic spheres in
J %: contact and surrounded by a fluid phase. The assumptioans made in

; : arriving at Eqmn. (4.20) are listed at the beginning of this section.

f: ii Most of these assumptions were made so that the results from Section
5 1 3.2 could be used. To evaluate Eqn. (4.20), a knowledge of the sizes,
E - material properties, number of contacts, location of contacts, forces
4

E - on contacts and the materials in contact have to be known. It is

. unlikely that these variables would be known in a deterministic form.
1- :; Therefore, the evaluation of Eqmn. (3.20) would require statistical

S

data. In the next subsection some simplications will be made

=
>
»

'
LN

concerning the solid-fluid system, which will allow an evaluation of

'l‘——%-“ -
v
v

‘I

Y té Eqn. (4.20).

(

S from Eqn. (4.20) some observations can be made concerning the

oy effective bulk modulus, K. For the case when the value of Su 1s zero

L)

1) -

O gauge pressure, Eqn. (4.20) shows that the effective bulk modulus

Y

] depends only on the material properties and geometries of the spheres
o~
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included in the solid-fluid system. The same results is obtained by

having the volume fraction of the voids in the system, C;, equal to
zero. Although the two cases listed above gzive the same result, the
manner in which these results were obtained are different. For the
case of zero gauge pressure the solution for a sphere in contact with
two adjacent spheres must be considered. This solution allows the
sphere in contact to deform freely into the surrounding void space for
conditions of zero gauge pressure. The effect of this is to consider
that the air in the voids does not contribute to the stiffness of the

solution. The Eqn. (4.20) would yield a different result if J, was

an absolute pressure. Under these conditions the term e¢ would still
be zero and the coantributioan of Su in the numerator of Eqn. (4.20)
would be negligible. For this case when the volume of voids is equal
to zero, the system would only contain the solid phase so that the
affective bulk modulus, R, would depend only on the material propertie;
and geometries of spheres in the system. In this case the system would
consist of only spheres such that all the void space being occupied by
a sphere of proper size. Another case to consider is when lEu [> o,
and the fluid phase is incompressible. For this case the volumetric
strain of the fluid phase, eg, is zero. To study the effect of the
incompressible fluid phase, it is recognized that the terms appearing
in the numerator and the denominator of Eqn. (4.20), will have negative
values when the solid-fluid system 1s in compression. Due to this,
Eqn. (4.20) shown that ti.: effective bulk modulus, X, increases as '5u

increases, for a constant volume of solids and voids. This shows that

a non-zero pressure in an incompressible fluid phase serves as a
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restraint against volume deformation. This is reasonable since an
incompressible fluid phase should ilncrease the stiffness of the system
and the fluid pressure, ;u’ should exist for such a fluid. For the
limiting case when the solid phase is absent in the system, Eqn. (4.20)
shows that the effective bulk modulus, E, becomes infinite. This 1is
reason;ble since the system contains only an incompressible fluid
phase. For a compressible fluid phase in the solid-fluid system, the
volumetric strain of the fluid phase, eg, will be non-zero. In the
limicing case when the system contains only a compressible fluid, the
effective bulk modulus, E, in Eqn. (4.20) 1is a function of the bulk
modulus of the fluid. This dependence is apparent from Eqn. (4%.18b).
For the case of a fluid with a constant bulk modulus, Eqns. (4.13b) and
(4.20) show that the effective bulk modulus, X, is equal to the bulk
modulus of the fluid.

The effective bulk modulus given by Eqn. (4.20) was determined by
considering a small representative sample of the solid-fluid system.
The macroscopic system will be made up of a number of these small
representative samples. If the displacement or the stress fields vary
with the position in the macroscopic sample, the effective bulk modulus

will vary with position. This occurs due to the fact that the constant

of superposition, b_;, is dependent oa the boundary conditionms
present on the contacts between spheres. These boundary conditions
change with the force or displacement, on the contact.

4.2.1 Effective Bulk Modulus of a Solid-Fluid System Consisting

of Ejual Spheres Arranged in Ideal Packing Configurations,

and Surrounded by a Fluid.

Restrictions concerning the geometry and material properties of
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. the solid phase present in the solid-fluid system will be made. These

- restrictions will allow Equ. (4.20) to be evaluated in the absence of

j lﬁ statistical data. The restrictions on the solid phase of the system

) are as follows.

-~ 1. The spheres in the solid phase of the system are of equal

radii.

2. The material properties of the solid phase are constant.

;5 3. The spheres in the solid phase are arranged in ideal packing
o\
- configurations.
oY With these restrictions Eqn. (4.20) is rewritten as follows.
<
. Y
:f 2 k
-~ ‘ 'y T pus
) ) (l+vs) CS b_2 k;l (b_z) + 3 Cf I
; 3 K= (4.21)
i‘ A
—3—12~)CE+§(b)k+C
o g (Im2vg) G5 b, 2 o
1 ] k=1
LS
!. where K = effective bulk modulus
o Cg = volume fraction of the solid phase

C¢ = volume fraction of the fluid phase

=
v 5y = fluid pressure
;i eg = volumetric strain of fluid
T2 ,
Gg = shear modulus of solid phase

- e Poisson's ratio for the solid phase

_ M = the number of contacts on one sphere
o
S u_, = the constant of superposition resulting from a
" uniform radial pressure on the surface of the sphere

the constant of superposition for contact k.
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The restrictions on the solid-fluid system requires that all spheres
are in static equllibrium, and that the contacts on a particular sphere
occur in pairs along an axis passing through the origin of the sphere.
Furthermore, all spheres contained in the system are of equal radii and
have the same material properties. These restrictions allow the use of
the results given in Section 3.4, to determine the constant of super-
position, b_;. The results contained in this section contain values

of b_, for the boundary conditions on a single sphere resulting from
Hertzlan contact with surrounding spheres and an uniform radial pras-
sure applied on the surface of the sphere. The effective bulk modulus,
K, given by Eqn. (4.21) will be determined .for the cases when the
displacements or stresses are specified on the boundary of the
representative sample.

/,

4.2.1.1 Displacements Specified on the Boundary of a Representa-

tive Sample of a Granular System

The effective bulk modulus, K, will be determined for the case when tne
displacements are specifled on the boundary of a representative voiume
elament, The rectangular coordinate system, (x, y, z) ls used to define a
polnt 1n the representative voiume. The representative volume will be
Sugjected Lo a macroscoplcally homogeneous displacement field. The

ilsplacement fleid to be imposed 1s given below

u (x) = X € x (4.22a)
4 (y) =y €y (4.2£D)
4, (z) = 2 €2 (4.22¢)

LN
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where uy = the displacement in the x coor@inate direction
uy = the displacement in the y coordinate direction
u = the displacement in the z coordinate direction

Z¢x = strain in the x coordinate direction

fyy = strain in the y coordinate direction

€,z = strain in the z coordinate direction

The strain rfield appearing in Eqns. (4.22) is assumed to be constant

with respect to the location within the representative volume. The

displacement vector at any point, (x, y, z), within the representative

volume is given by

c+

= uy (x) &, + uy éy +u, éz' B T k)

where u = the displacement vector

e, = the unit vector in the x coordinate direction
e, = the unit vector in the y coordinate direction

e, = the unit vector in the z coordinate direction

Substitution of Eqms. (4.22) into Egqm. (4.23) gives the following

displacement vector in terms of the strain field

d=x €Exx @x * Y €

®>

Yy ey + 2 sz

2t e e e (4.26)
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To aetermine tne dlspiacement vector il a point of contact between LWO
spneres, 11U will De assumed tnat Lnls vecLor 1s determlined Dy evaiuatlng zgn.
(4.24) at the coordinates of tne contact. A typical sphnere contalned Ln tne

representative volume element, wltn thne origin at point (xo. Yor Zg)s 1S snown

o’
in Fig. 4.2, In F1g. 4.2, the spnere 1s snown in contact witn twe adjacent
spneres., The local coordinate directions, ;, ;, 2, shown 1n Fig. 4.2 are
parallel to the x, y and z coordlnate directions, respectively. The local

coordinate system (xm, y zm), 1s positioned so tnat the z_ axls 1s directed
It

m’ m

tnarough tne origin of the spnere and contact pailr m. The angles Bm amd ¥m

define the position of the lcocal coordinate system (xm, Yo Zm), relative to
-~ 0 - S .

tne coordinate system (x, ¥, z). The contacts occurring aiong the z, axis are

labeled as contact 1 and contact 2, as shown in Fig. 4.2. The ccordinates of

tne center of contact 1 in reference to the coordinate system, (x, y, z) are

given by
X, = X + R sin cos 4.25a
1 0 Bm I‘Jm ( )
f, = + R siln sin 4.25b
j1 yo Bm Ym ( 5b)
z, = z2_ + R cos 4.25¢
1 o Vi ( )
Wnere x1 = x coordinate of tne center of contact 1
yl = y coorainate of tne center of contact |
z1 = z coordcinate of wne center of contact 1
R = raadius of tne 3spnere
e e N N S v L e A
il 4 B B R . N N A . A
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In a similar manner, the coordinates of the center of contact 2, in

reference to the coordinate system, (x,y,2z), are given by

X9 = x5 - R sinBln coswm . . . (4.26a)

Y2 T ¥~ RsinBysin¥ . . L L L L L L L. L. (4.26b)

29 = z5 - R °°s%n

Using Eqn. (A.é&), the displacement vector may be evaluated for the
points (xl,yl,zl) and (X9,y7,z7). The displacement vector at point (xi,

¥1,21) is given by

up = (xo + R Sian cos""m) €<x ©x

+ (yo *+ R sinBy sinyy) €,y éy

+ (25 + R cosyy) ¢,, é& . .. ..

, R 9 3

The displacement vector evaluated at point (xz,yz,zz) is given by

S A
= - R sin cosy ) € e
42 (xo 8m wm XX X

e

+ (yo = R sinB; sinygy) €y €y

+ (z5 =~ Rcosyg) €5, & « « v« v o o . o o ... (4.28)
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b_ In Eqns. (4.27) and (4.28), the subscripts 1l and 2 denote the displace-
~

ment vectors at contacts 1 and 2, respectively. The magnitudes of the
displacements in the positive z; coordinate direction may be deter-

- mined for contact, 1 and 2 by taking the dot product of the displace-

- ment vectors at these contacts, with a unit vector in the positive zy

coordiante direction. The unit vector in the positive z, coordinate

-~

i direction, €,m» 1S glven by

. & = gi é i i e e y
w €,n = Sinfy cosyy €, + sind; siayy P cos B .. (4.29)

The displacement at contact 1 in the positive z, coordinate direction

R Ls givea by

r‘ uz];u = 31 © @ym = tex(Xq + R sinBy cosyy)sinBy cosy,

+ Eyy(yo + R sinBg sinV ) sinBy sinyg

o

:::

' 2(2Zo * RcosBp) cosBy + . . . . . . . ... (4.30)
- where u;m = the displacement at contact 1l in the

positive z, coordinate direction.

LA

The displacement at contact 2 in the positive z, coordinate direction

. is given by

- ._o

P et N
YORE AR .,'_ I ITATNNE
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2 e

E~ 4

2 - -
Ygm ¥ Y2 * ezqn <
exx (Xg — R sinBy cosyg) sindp cosugy

t Eyy (yo = R sinB; siny) sinB siny,
+€,, (25 - RcosB ) cosB, . . . ... ... . (4.3

where U,m = the displacement at contact 2 in the positive

zy coordinate direction.

Having determined the displacements in the positive z_ coordinate

m
directions for contacts 1 and 2, the change in the diameter of the

sphere along the zy coordinates axis is given by
Au -1 2 .2 2 + ,Zﬂ 2
zm = Uzm ~ Uzm = 2R €., sinBy cosliyy 2R Eyy sin 8 _ sin wm
2R g, co82By o L L L. (4032)

where Au,n = the change in the dimension of the sphere along

the axis Zq-

The Eqn. (4.32) gives the change in the diameter of a sphere resulting
from contact pair m, directed along an axis passing through the o.igin
of the sphere, as shown in Fig. 4.2. The position of this axis with

respect to a global coordinate system, (x,y,z), is defined by the

LR ITTe N

151

TS vJ\-’.->‘.v)""‘ n -r#-r*p._
e A L s R



k-

TN
S

=

.-.-‘

v

i~R

SN

o

v v .
ot
e

'l'. IJ.'l

. _'v ::1

thl

(8

Foe

y
l(\* 3

1)

+ TSNS SN

> .' “ " -- .I .'

152

angles 8, and y,. If the spheres shown in Fig. 4.2 are all of the

same radii and material properties, then the deformation occurring at

the center of each contact would be equal. The magnitude of this

displacement would be half of that given by Eqmn. (4.32). This magni-

tude is given by

Gm = R [sxx sinZBm coszlbm +

£

vy sinzBm sinzwm + €

coszﬁm] (4.33)

F

where Up = the displacement at the center of either

contact for contact pai. m.

The direction of the displacement given in Eqn. (4.33) is toward the

origin of the sphere if Em is negative, and away from the origin of
the sphere if uy is positive. The result given by Eqn. (4.33) will

be used to determine the effective bulk modulus, k, for the case when

the displacements are known on the boundaries of the representative
volume element.
For the case when the displacements are known on the boundaries of

the representative volume element, Eqn. (4.21) is written as

M
u ¢ . -
6 (1+v )C 1 b_, + mEl (b )| +3C 9,
3k = W (4.34)
3 (1-2v yc | %« g ® ) |+c, e
G Vs'ts| °-2 -2’m £ °¢
s m=1
: ~ e e SRS R L N e LT = ol ™~ a P BT G RS
L P T AR A L N
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All the terms appearing in Eqn. (4.34) have the same definitions as in
Eqn. (4.21), except that the superscript, u, has been used on the
censtants, B-Z and (b_5);, to indicate that these constants are
determined for the case when surface displacements on a sphere are

specified. From Section 3.2, the constant of superposition, bY

-2 is
given by
u
G g
P -
b_2 TISZWIR © © 5 " m s s e e e (4.35)
where R = radius of sphere

G = shear modulus of sphere

<
[]

Poisson's ratio for sphere.

The constant &%, appearing in Eqn. (4.35) is determined from the

displacement boundary conditioas oa a sphere.

Two—cases—of—boundary
eonditions—on—a—sphess. Two cases of boundary conditions exist on the

sphere. The first is the displacements resulting from contacts with
adjacent spheres and the second due to the displacements from a uniform
radial fluid pressure acting on the sphere.

The constant Ez has been determined for the displacement boun-
dary conditions resulting from the contact of a sphere with two adja-

cent spheres, along an axis passing through the origin of the sphere.

. u
For this case the constant 50 is

u <u

(4.36)
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the terms X" and £, are given by

3(1-vH)RF
e PPN C9% 12
8 a~ E

3 =‘(25in2¢'£l)51“2¢' + (l-c°§4¢') e (6.38)

where F = the force transmitted through the contact
R = radius of sphere
a = radius of the contact area

' = sin"l ()

The Eqns. (3.16a) and (3.20) may be combined to determine the radius of
contact, a. For spheres of equal radii and material properties, the
radius of contact, a, is given by
2
3/ 30-v2)RF

as= e A (4.39)

Substitution of Equn. (4.39) into Eqn. (4.37) yields the following value

for kY

R
e T PP € 0D

Combining Eqns. (4.35), (4.36) and (4.40), the constant of superposi-
tion, bBZ, can be determined for one pair uf contacts on a sphere.
This result is given by

G E°
by, = 2

) R T T(Iqu) ottt e e e e e (4.41)
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~ The term 5, appearing in Eqn. (4.41) is given by Eqn. (4.38). This
term is a function of the angle defining the contact area, »'. The

& angle, »', may be related to the displacement at the ceanter of the

contact. This relationship is determined from Eqns. (3.16) and 1is

given by
ig -1 ,a bt
‘ o' = sin” (P = sin~l GJITI/R), (0 < o < Y2) . .(4.42)
W
’.:n
o
iﬁ where u = dispacement at the center of the contact area
*a

R = the radius of the sphere.

KR

The absolute value of u is used in Eqn (4.42) since ¢' 2 0. The value of u for

.~

a pair of contacts oan a sphere is determined from Eqn. (4.33). This value of u

is an approximation but should be sufficient for the determination of

the effective bulk modulus, k.

-
>

LSt

u . .
The value of &, for the surface displacements resulting from a
.' uniformly applied radial pressure on a sphere may be determined from

Section 3.4.3. This value is given by

:,1
. (1=2vR o,
ij €o = TS R R (4.43)
X = .
o where Ccy = fluid pressure on sphere
' Substitution of Eqmn. (4.43) into Eqn. (4.35), gives the constant of
- - u . . .
L: superposition, b_2, for a sphere subjected to a uniformly applied
_ radial pressure. This constant is given by
>
v
%
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| Substitution of Eqns. (4.41) and (4.%4) into Eqn. (4.34) yields the

following for the effective bulk modulus.

-
N
wy
* M
-3(l+vs) GS C 2 u
~. z (7)) + 3o
:. _ (1 2\)5) m=l om u
) Ik = .. (6.49)
. M
o 2 3(1-2v )G_ o
’, 3 u s"'s "u
2% | IoGEdn| YT ae s "G e
m=1 s s)

i
"5
. where k = effective bulk modulus
L4

Cg = volume fraction of solids in the solid-fluid system
ll C¢ = volume fraction of fluid in the solid-fluid system
tj Gy = shear modulus of the solid phase
.
*>

Vg = Poisson's ratio of the solid phase
. g, = fluid pressure

eg = volumetric strain of the fluid phase.

? x .‘l
P
™
oFE
]

constant determined from displacement boundary

E: conditions on sphere
L]
M = number of contacts on a single sphere.

f*:

"

Y4

. The effective bulk modulus, 1, given in Eqn. (4.45) is for use when the

.:,,'

displacements are specified on the boundaries of the solid-fluid

A
! fﬂ system. The simpliciations used to arrive at Eqn. (4.45) from Eqn.

&

(4.20) were that the spheres in the system are of equal radii and have
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res

the same material properties. These spheres are situated in ideal

>

*

. packing configurations.
!i To evaluate Eqn. (4.45), the voiume fractions and material proper-
u
ties of the solid and fluid phases must be known. The term, 5., must

b
E
!
)
-
« "
4
i
:

be known for each contact pair occurring on a sphere in the solid-fluid

system. This constant may be obtained when the

displacement, u, of the center of the contact region is known. To

determine the displacement, u, Eqn. (4.33) is used. The displacement,
J, is the displacement normal to the region of contact. This displace-
ment was determined by treating the solid-fluid system as a continuum
undergoing macroscopically homogeneous displacements of the form given
in Eqn. (4.42). The displacement vector at a point in this coatinum
was taken to be that occurring on a contact at this point. The magni-
tude of the displacement vector normal to the reglion of contact was
taken as u. This value of 4 is an approximation. Any displacements on
the region of contact which are tangential to this region have been
neglected.

The angles, 2, and ¥, defining the location of pairs of
contacts with respect to a global coordinate system, must be known to

. . u
evaluate the sum involving the term 50.

4.2.1.2 Surface Tractions Specified on the Boundary of the

Representative Sample.

Tue effeétive bulk modulus, ;, will be determined for the case
when the surface tractions are specified on the boundary of a repre-
sentative volume element. The representative volume element will be
subjected to a macroscopically homogeneous stress field. The stress

field to be applied to the representative volume is given by
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%
]
N . = - C e ... (4.463)
;E Ty (%) SRR e e e e e e . 404
!! z =C e 1Y )
yyt¥) = Tyy
o,
5
he)
z = B e
S O (4.46¢)
®
JU
- where Ty, = the stress normal to the xz-plane
On -
»
Jyv = the stress normal to the xz-plane
o - =
o “,z T the stress normal to the yz-plane
o
- The stress field given by Eqns. (4.46) is conmstant with respect to
€§ position within the representative volume element.
~ An arbibitrary plane cut through the representative volume is
S
LY
shown in Fig. 4.3. The unit normal vector to this plane is designated
il as a. The angles %¢>%y and %, define the position of the unit normal
- ‘ .
~ vector, 1, to the x, y and z axes, respectively. The stress vector, T,

on this plane is given by

T = Txx COS%y @y * Oyy cosdy ey + T,, cosd, e, . . . (4.47)

A
X

- where éx = the unit vector in the x coordinate direction
-: N *
éy = the unit vector in the y coordinate direction
".‘.
o éz = the unit normal vector in the z coordinate direction.
«
o
n

The unit normal vector, a, to the plane shown in Fig. 4.3 is given by

-~ -~

= cos* 3 + a a o
Q= cosfy 2y * CO8%, ey + cos¥, e, L. L. L L (4.48)

22 W
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The normal stress on the plane is determined by the dot product >f th

19

—_

strass vector, T, with the unit normal wvector, n. Performing :zhis
operation, the normal stress is given by

2 2 - 2
= J Lo} o - »] &
a Txx €08y T Cyy costdy + T, cosc,

“

The normal stress given by Eqn. (4.49) was determined by treating the

representative volume element as a continuum subjected to the stress

field given by Eqn. (4.46). The plane intersecting the representative
volume, shown in Fig. 4.3, will contain a number of contact regions
present in the solid-fluid system. These contact regions are formed as
the spheres in this system are compressed together uader the action of
the stress field given by Eqms. (4.46). Such a contact region is shown
ia Fig. 4.4. The normal force transmitted through this contact region
will be determined as the product of the normal stress acting on the
plane containing the contact region and an area contained in- the plane.
In Fig. 4.4, the rectangular coordinate system, (Xp,Y¥m,Zp), 1S positioned
such ther <ue 2z, axis is directed through the centers of the contact
regions for contact pair m and the origin of the sphere. The coordi-
nate system (Xg,¥qg,2q) 1S defined relative to the coordinate system
(1,},2) by the angles 3, and y,;. The coordinates, X,y and z are
parallel to the global coordinates x, y and z, respectively. In Fig.
4.4, the plane containing one of the contact regions for contact pair m

is shown. The unit aormal vector to this plane is given by

30

= sindy cosvy e, + sin2y sinig éy + cosig &,

- , Te T om e - . " p e '.-
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where unit vector 1n the x coordinate direction

¢
1]

X »
a, = unit vector in the y coordinate direction
e, = unit vector in the z coordinate direction.

The stress vector occurring on the plane shown in Fig. 4.4 is given by

- - - . - . ~ - 2 < /
= sinz sy e + 3 sing sinv e + = cose e . .(4.51)
T xx ST ©° m x vy m m v zz m z

The stress components, o , 0 and o _
xx'"yy 2z

those applied to the boundaries of the representative volume element.

appearing in Eqn. (4.51) are
pos The normal stress on the plane defined by the unit normal vector
oA appearing in Zqn. 14.50) is determined as the doc product of the

vectors given in Eqns. (4.50) and (4.51). This normal stress is given

d

T .2 2 .2 .2
3 = 3 sin 3 cos + sin 3 sin ¢
o Xx m m vy m
+ g c0323 (4.52)
. zz m . . . . .
m o
where 2 _ = the normal stress on the plane contaianiagz the
0

contact regions for coatact pair m.

!
T |
oL ;
W - . . . !
The force transmitted through a contact region contained in the plane
o w m .
_& subjected to the normal stress, 54y LS glven by
3 Fallm¥m) = 905, 4 ) (4.52°
2(2m Ve AP Vp) A o o oL (432
we
;.-
whera An = area of the plane coantaining the contact region

m
which transmits normal stress J4 Chrough the

contact region.

>
" ‘)._/-J_f/-
xnu&ﬁ j&mﬂ‘
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In Eqn. (4.53) F, is the force transmitted through a contact contained
in the plane defined by the unit normal vector givep in Eqn. (4.50).

The normal stress, 3:, appearing in Eqn. (4.53) is given by Egn.

(4.52). To determine the force, Fy, transmitted through a pair of
contacts m, Lt will be assumed that the spheres which are intersected

by a particular plane carry the same loads as the contact regioas
contailned in the place. Therefore, the normal stress occurring on a
plane will be transmitted evenly through the spheres and contact

regions intersected Dy the plame. The area Ay appearing in Eqn. (4.53)

is given by

[2(1+V 3)R][2V 2 R] 4V 2T (1+ Vv 3HRT

o = 3V 3 i 3V3

&
wn
£

From f%qn. (4.53), the force transmitted through contact A 1s ziven by

-_ /.2
Vv 2(1+ V3R T
:-'m = . (4.53)
—
3V 3

The normal stress, :2, is given by Egn. (4.52). This normal stress
depends oa the angles, 2 and u,, defining the contact orientation
with respect to the zlobal coordinate system, (x,y,z). A particular
sphere in the system under consideration will normally be subjected to

many contacts. The force, Fy, transmitted through a contact will

depend on the contact orientation and the area, Ag.




The value of F; is an approximation to the actual force trans-
mitted through a contact. The contact forces occurring in many systems
of spheraes situated in ideal packing configurations, may not be deter-
mined from the equations of static equilibrium. Due to this the
approximation of the contact force, Fgy, given by Eqn. (4.53) will be
used. This approximation will be used to determine the effective bulk
modulus, R, for the case when surf%? tractions are known on the repre-
sentative volume element.

For the case when surface tractions are specified on the boundar-

les of a &re representative volume alement, Eqn. (4.21) 1Is written as

follows.
¥
=3 2 o]
\ + - A
) 6(l+)S)CS b__2 + kzl (b—Z)k 3 C
3 K (4.56)
Jud
3 -q 2 o]
= -7 > -
z (1 _us)CS b_2 + z (b 2)k + C. e
s k=1

All the terms appearing in Eqn. (4.56) have the same meaning as those
appearing in Eqn. (4.21). The superscript, 7, has been used on the
constants, E—Z and (b-Z)k’ to indicate that these constants are deter-
mined for the case when the surface tractions have been specified on
the boundaries of the representative volume element. In Section 3.2,
the constant of superposition, bfz, was determined. This constant 1is
given by

J

-3 0
= s N XS
Ry er =y CIRIRIR (4.57)

Jn

where v = poison's ratio for the spheres.
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The comstant, 3, appearing in Eqn. (4.57) is determined from the

surface tractions present on a particular sphere. Two types of boun-

g _ 3

dary conditions will exist on the spheres in the solid-fluid system

’

[ 200
LR

under consideration. The first of these boundary conditions are the

surface tractions resulting from contacts with adjacent spheres. The

L/~

X

>-

second boundary condition is due to a uniform fluid pressure acting on
o~ the surface of the sphere.
[a¥)
) The constant, ib, has been determined for the surface tractlions
'::'4‘
- which result when a sphere is in contact with two adjacent spheres.
- The contacts made with the two adjacent spheres are along an axis which
o~

passes through the center of the sphere. For this case the constant
2 ..
W o 13

4
o a
1]
A

Q

.. (4.58)

JTy
G Q

aQ

The terms k and.gg; appearing in Eqn. (4.45) are given as follows.

oj 3FR
.- - S 1 D
3
o 27a
- : 4 \"
7 od sin"s' cos »' sind’ cos ' l+sino '}
4 >0 © 4 8 8 L coss'
v o4
- (4.60) :
3
e .
) where F = the force transmitted through the contact
.b R = radius of the sphere
%l
a = radius of the contact area
~
-
§ ¢ - a
is 5' = gin~l (E)
'-‘
r
"
I
o 8
v
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The Eqn. (4.39) gives the relationship between the radius of the

contact region, a, and the force transmitted through the contact, F.

Using this relationship the constant, k™, given by Egqn. (4.59) may be
rewritten as
LI 2E

e -
T(l=-v")

o
]

where modulus of elasticity for the sphere

Combining Eqmns. (4.57), (4.58), and (4.61), the constant of super-

position, b:z, is given by

—~ 2 ."3
v (9 7
7(1=-v")
where G = the shear modulus of the sphere

The quantity, Eg, appearing in Eqn. (4.62) is given by Eqn. (4.60).
From Eqn. (4.60) it is seen that Eg is a function of the angle, o',
defining the contact region. This angle may be related to the force,
F, transmitted through the contact through Eqn. (4.39). This relation-

ship is given by

O (2.

..'(.... ‘p "\'-(lf"’\n'

il o O3
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i The approximation given by Eqn. (4.53) will be used to
determine F, which is required in order to evaluate the effective bulk
4 -
| E modulus, X.
A -3 . . .
S The value of 5, determined for the case when a uniform rdial
~
o pressure 1s acting on the surface of a sphere was determined in Section
t
‘ ‘-" 3.4.3. Thi 1 i i b
" .43, is value is given by
D
E .
R L%
A .3 =
'. o 5o = v_,u (4.64)
LY
NN
L where J, = fluid pressure on the sphere
i
SRS
C
) w Substitution of Eqn. (4.64) into Eqn. (4.57) gives the constant of
r-\‘ -
? superposition, b_jz, appearing in Eqn. (4.56). This constant is given
» ‘-
| by
I =
N - J
;o b, = (4.65)
: -2 2(l+\)) . . . . . . . . . . . . ) 0 . . - . . . .
A
j Substitution of Eqns. (4.62) and (4.64) into Eqn. (4.56) yields the
.
"
S following expression for the effective bulk modulus.
(
‘IR
I
- M
X, 126G 2
( - —S5_ S T (9 -
. _ (1-v) - o'kd +3 ¢
b IJK= S - (4.66)
v !
K -6(1-2v )C_| 2 3(1-2v_)C_3
Y : s’ s : (£%) + S_ S U . o,
d _— 3 : e
L (1-v. 5y L=t oK 3G (1+v.) ‘
s s s
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b
J = .-
b Where K = effective bulk modulus
. C_ = volume fraction of the solids in the solid-fluid svstem
y = :
r' - . -
' I! Cf = volume fraction of the fluid in the solid-fluid svstem
2 -
D - .
GS = shear modulus of the solid phase
S
a vy = Poisson's ratio of the solid phase
N - S fluid pressure
) ef = volumetric strain of the fluid phase
h ii ié = constant determined from the stress boundarv conditions
4
! on a single sphere
| I
[ : “: )
; . M = number of contacts on a single sphere.
o
o -
¢ e The Eqn. (4.65) gives the effective bulk modulus, K, of a system
]
o comprised of a number of equal spheres, in ideal packing configurations,
s..“
3 with the surrounding void space being filled with a fluid phase. The
o -
’ li effective bulk modulus, K, given by Eqn. (4.63) is used when the normal
L
- stresses are known on the boundaries of a representative volume element.
) L3 ..
- - - ) ) L
; T To use Eqn. (4.63), the volume fractions of the solid and liquid phases
- present in the system must be known. The constants, 5., must be deter-
J N °©
s mined for every contact pair occurring on a single sphere in the system.
[ L .
- . . .
ke > To determine these constants the force, F_, occurring on a contact pair
m
q . . < . .
e = m is approximated by Eqn. (4.53) The approximation to the force, Fp, was
] -
- . . . : ; i . The normal
arrived at by considering the solid-fluid system to be a continuum
ey . .. . .
- ;p stress acting on a plane containing a particular contact region was
q -, . .
L determined and then the contact was said to carry a portion of this
> _ _
: -7 normal stress. Any tangential shear stresses acting on the plane
YRRt containing the contact region were neglected so that the solutions
11 _
. given in Chapter 3 , could Se used in determining the effective bulk
L
4 :f modulus.
W
.
W .
4
5
'.t
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,? 4,2.2 Discussion of the Effective Bulk Modulus Determined
. from the Volume Averaged Approach
!5 In the pravious two subsections of this chapter, the affective
e bulk modulus, K, for an idealized solid-fluid system was determined
o

using a volume averaged approach. The idealized solid-liquid syvstem
!5 under consideration consists of a number of spheres in contact sur-
" rounded by a fluid phase. In order to obtain a simple expression for
-j the effective bulk modulus, K, o>f such a system some restrictions on
%p the zeometry and matearial properties of the spheres in the svstem had
)

to be imposed. These restrictions are as follows:
R
1.

-~ ties.

All the spheres in the system have the same material proper-

2. The spheres in the system are of equal radii.

ls 3. The spheres in the system exist in ideal packing configura-
) tions.

e

"y

e

The first of these rastrictions is the most reasonable with

. respect to modeling actual systems. The second and third restrictions
are less realistic with respect to modeling actual systems. In some

‘A cases all the spheres in a solid-fluid system may be of equal radii

e thus making the second restriction valid. The third restipiction which
requires the spheres in the solid-fluid system to exist in ideal pack-

4

4 ing configurations 1is the most unreasonable. In actual systems compos-

. 2d of spneres in contact, the spheres will be arranged in a raadom

B srder. In such a system it would be impossible to identify the loca-

e zions of the contacts prasent on a single sphere so that statistical

| data of some form would be required to evaluate the affective bulk

" modulus. By restricting the spheres in the solid-fluid system to be of

m Z‘fm.u“.'ch Z[L/\ud\.) "
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. .. . . . .. . .
(N 2qual radii and arranged in ideal packing configurations, the location
‘ "4:- - . . . . . - |
. of the contacts on a single sphere within the svstem mav be i1dentirfied.
Y

: i! Tais allows for the determination of the effective bulk modulus without
S the use of statistical data. In fact, the three restrictions thus far
- mentioned allows the determination of the effective bulk modulus by

] = . . . . . . . . .

¥ considering only one sphere and its interactlons with adjacent spheres
[ .-

j and the fluid phase preseant in the solid-fluid svstem.

r-:’,

N Y Other restrictions were imposed on the stresses and displacements
1 4

A . . .

Ko > occurring on the regions of contact between adjacent spheras. These

b

" restrictions are as follows.

A . . . .

) )ﬁ 1. The contacts on a particular sphere appear in pairs with each
¢

¥ . pair occurring along an axis passing through the origin of the
R4

L .J:'

S sphere.

,
! i: 2. The stresses and displacements occurriang on a particular
g

1] . . . . .

9 region of contact are axisymmetric with respect to an axis

-

o passing through the center and perpendicular to the region of

- ! contact.

Ty

- 3. The displacements and stresses normal to the region of contact
e .

. s may be determined from Hertz contact theory.

P

« The purpose of these restrictions was to allow the use of the solutions
_

N - . . . . .

- given in Chapter 3 , in determining the effective bulk modulus. Any

.

‘.‘ - . . .

.o non-symmetric displacements or stresses, tangential to the region of
A

: contact have been neglected in the determination of the 2ffective bhulx
; o modulus of the idealized solid~fluid system.
'

J .} Using the restrictions thus far mentioned, the =2ffective buixk

K -

modulus, X, >f the idealized solid-fluid system was determined for two

. .
o U PR AR AT A
]

o types of boundary conditions present on a representative volume ale-
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ment. The first of the boundarv conditions to be :onsidered, corre-
sponded to the case when the displacements ar2 specifled on the surface
of the representative volume element. The Jdisplacement occurring o>n a
particular contact was approximated by treating the solid-liquid svstem
as a continuum. The displacemant >n a parcicular confact was cthean
determined as the displacement occurring in a contfinuum at the location
Of the contact. This type of approximation is 3sed because the actual
value of the displacement o5n a3 particular contact i3 indeterminata for
many 1ideal packing configurations. For the case of a simple cubi:
packing configuration, the actual displacements occurring on the
contacts may be determined. The approximation used to determine the
displacement on a contact, yields the actual displacement for this
case. The second type of boundary conditions which were considered,

corresponded to the case when the surface tractions are specified on

the surface of the representative volume element. For this case the
force transmitted through a particular contact was again approximated
Sy considering the solid-fluid system to be a continuum. The normal
strass acting over a portion of the place containing a particular
contact reglon is taken to be the force transmitted through the
contact. This approach to determine the contact forces vields the
actual value of this force for the case of a simple cubic packing
configuration.

The 2xpressions for the affective moduli obtained in the pravious
tWo subseactions represent verv idealized conditions as apparent from
the restrictions and approximations used in the derivation. In using
these 2xpressions to determine the e2ffective modulli for an actua,

350l1d-fluid system, the accuracy of the value obtained for the etfec-

« ..._;_:
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tive bulk modulus should improve as this svstem becomes better repre-
sent2d dv the idealized solid-liquid svstem. Predictions of the effec-
tive bulx modulus should improve for hvdrostatic stress states. This
ls becausa there would be no shear stresses developed in the idealized
solid-liquid system. Any shear stresses which develop due to non-hy-

drostatic stress states have been neglected in the determination of the

W

tfective modulli. By the same reasoning, the predictions of the 2ffec-

e

tive bulk modulus should improve when the displacement components are

all of equal magnitude.

o~
W

Energy Approach for Determining Bounds on

the Effective Bulk Modulus

The theorems of minimum potential energy and minimum complementary
energy will be used to determine upper and lower bounds on the effective
bulk modulus of an idealized solid-~fluid system. These theorems and
their use in determining upper and lower bounds for the effective bulk
modulus will be discussed below.

To discuss the theorems of minimum potential energy and minimum
complementary potential energy, an elastic body in static equilibrium

is considerad. The boundary conditions prescribed on such a body are

Zzlven by
T = -.. n, on S . . . . . . v .. e o .o (a.66a)
i iy s
1.0= on 5, . . e e e e e . .. ThA.hb6D)
i i
where s . = s3tress tensor
1]
J'J‘J'l,

m.}ﬂf'"
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'
A
S
B
Y u = components of displacement vector
o i
9 B n, = components of the unit outward normal vector
)
E on the surface
Ti = components of the stress vector on the surtace
&f
AN - .
;. ;Q u, = components of the displacement vector
!
!._ -
sur
T on the tace
. ". . « -
K. S_. = surface over which T is prescribed
. b
[\* R - _ . - . Ly
O bu = surface over Which uj 1s prescribed
) <!
r
-'.'
(R Cartesian tensor notation is used in Eqns. (4.66) and will continue to
] y
]
e be used in this section. The potential energy functional is defined as
of
4 F"
{ follows:
L. -
N g = W(eij) dv - Fi{ uj dv - T{ uy ds . . . . (4.67)
H o
R v v S
i O
where F; = components of the body force vector.
--:'
o . . - .
A In Eqn. (4.67) the term W (aij) is called the strain energy function.
’
- This functioam is given by
L) .t
p
,‘. 2 WCE,.) = 1/2 Courr € € v v e e e e e e e e e e . (L.68)
. ij ijki "k2"1ij
{
R
g
’ . . -
b, ™ where C.., . = =2lastic stiffness teasor
» LJKd
»
v = {
3 K strain tensor
v
(
SRS
. Admissibla displacement fields, u;, are defined as any coantinuous
- iisplacement fields satisfying the boundary condition given dov Eqn.
‘m
i -~ . .
' {4.56b), but otherwise arbitrary. Under these rastrictions the theorem
A\l :i:'
o 1‘_'
A
&
¥ .
(
‘.
L]
o 0t A e L e T L e T T T
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of minimum potential energy says that of all the admissible displace-

ment fields, u;

;. the one that satisfies Ihe equations of equilibrium

.

s that which results in a stationary value of the potential energy

functional. This may be written as

1 S o A €/ LB

™

where U. = the potential energy functional evaluated for

(W)

any admissible displacement field

U-. = the potential energy functional evaluated for the

(U}

displacement field which satisfies the equations

In using Eqn. (4.69) to determine bounds of the effective bulk modulus

of a composite mcterial, the body force components, F;, will be

considered to be zero and the boundary conditioms will be such that
displacements are prescribed over the entire surface of the body under
consideration.

For this special case the potential energy functional

given by Eqn. (4.67) reduces to

(4.70)

. . . . . .

The Eqn. (4.70) gives the strain energy of the body under considera-

tion. Therefore, for this special case the theorem of minimum poten-

tial reduces to a minimization of the strain energy stored in the

body.

.. “a ‘ " " ‘-. ". » "
e '(.‘r '\-" " "bﬂf "y"'r "- T, v e -.’r"»';‘-' .~ - NS Tt
» » -

-
.
13

ki adin ‘ g L)

s
; ..‘..' .Oqi '!




PRIV P (g (g LTINS ITE 1TV I1ITWURNUVURSINS T T TE

174

&
-

re

In discussing the theorem of minimum complementary energy, an

Wl

elastic body in static equilibrium 1is considered. The boundary condi-

« 4
=

tions on this body are those given by Eqns. (4.66). The complementary

N energy functional is defined as

: -
r .- U = Ww(o,. ) dv - 6j u; dS . L . ... o oL (6071
s ag 1]
¢
K ': v SU
L -
1 4
Y -
o The term W (O}j) appearing in Eqn. (4.71) is the strain energy function
[y -
expressed in terms of stresses. This function is given by
‘N
-
V v (o )-is o (4.72)
: .:: . ij 2 ijk2 Okl ij . . . . . . L3 . . . . . . . . . - -
. ".-
: where 5, = Lensor of elastic compliances
{ _ iike
w The stress field, 9ij, appearing ia Eqn. (4.71) and Eqn. (4.72) is
- admissible when the boundary conditions given by Eqn. (4.66a) and the
i - equations of equilibrium, are satisfied. Under these restrictions the
K
N .
~ theorem of minimum complementary energy says that of all the admissible
"4
— stress fields, the one which satisfies the compatibility equations is
! N that which results in a stationary value of the complementary energy
*
- functional. This statement may be written mathematically as
1
»‘ 3
g Ug = U 20 . v v oo o e s (6073)
'
I .
) ~
-~ where Gc = the complementary energy functional evaluated
: j? for any admissible stress field
{

REO
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U. = the complementary energy functional evaluated
o
for the stress field which satisfies the

compatibility equations.

In using Eqn. (4.73) to determine bounds on the effective bulk modulus

!! of a composite material, the surface tractions will be prescribed over
. the entire surface of the body uader consideration. For this special
- . .
- case the complementary energy functional 1s given by
' U= | W (o) dV e e e e e e e e e (80748)
. ¢ 1]
N
\ v
~ T
The Eqn. (4.74) 1is an expression for the strain energy of the body
o
under consideration. Thus, when surface tractions are prescribed over
o the entire surface of the body, the theorem of minimum complementary
N
energy reduces to a minimum principle for the strain energy.
"~
- 4.3.1 Upper and Lower Bounds of the
N .
‘ Effective Bulk Modulus
i The theorems of minimum potential energy and minimum complementary

x
v'. -

energy will be used to determine upper and lower bounds on the effec-

tive bulk modulus for a composite svstem. The Eqn. (4.5) mav be

| @S

rewritten as

lqh—‘
4
(S
(&9
<
[}
\
G
A
~
f
A4
<

Y.L =L, AN ,,k ~z, . L S S S T T Y 4.
s I (4.75)
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where {Z..” = volume averaged stress tensor
fa. > = yolume averaged straln tensor
J.. = Lnfinitesimal stress tensor
€,. = infiaitesimal strala tensor
V = total volume

.
The Eqn. (4.75) is a statement that the strain energy stored in the
different phases of a is equal to the strain energy expressed in terms
of volume averaged stress and strain. The integral appearing in Eqn.
(4.75) is taken over all the phases contained in the composite mater-
ial. 1If the volume averaged stress tensor, <oij>, or the volume aver-

aged strain tensor, <Eiﬁ>’ are known from the macroscopic stress or

strain states occurring in the composite material, then it follows from

the minimum theorems of potential and complementary energy that

c e e . (4.76)

The Eqn. (4.76) is applicable when either the surface displacements or
the surface tractions have been specified over the entire boundary of
the composite material. When the displacement field is specified on
the boundaries of the composite material, then an admissible strain
field, Eij’ must be such that it satisfies the displacement boun-

dary conditions. Then the stress field, jij' 1s related to the

strain field, =.:

]_Jv by

I
™

Ti Cijkf.ij."....'..'.'.....'(4'77)

where C = 1 1
iik2 tensor of elastic modull.
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satisfy these stress boundary conditions. Then the strain field,

When the surface tractions are specified on the boundaries of the

composite matarial, then an admissible stress field, °::, must

1)

iij’

1s related to the infinitesimal stress field, :ij‘ by
le = Sl_]k&:kl’ . . . . . . . . . . . . . . . . . . . (a.78)
where Sijki = tensor of elastic compliances.

An upper bound on the effective bulk modulus, K, may be determined
by considering the composite material to be subjected to displacement
boundary coanditions which result in a uniform volume averaged strain

tensor, <. .>. The displacement boundary conditions of this type are

1]
given by
<z >
- T"kk” -
uy = 3 S LD
where: Gi = surface displacement components
€ T the trace of the volume averaged strain tensor
Xj = rectangular Cartesian coordinates with
respect to a system of axes, evaluated on the
boundaries of the composite material
The volume averaged strain field, <5ij>, resulting from the boun-

dary conditions given by Eqn. (4.79) are given by

"»‘_..)=—3——i,,....................\4.80)
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where Si' = Kronecker delta = Lo1=)
J 0, i#]

[f the composite material is an isotropic, linearly elastic material,

then the volume averaged stress field, <:ij>, occurring in the

composite material is given by

L 0

where K = the effective bulk modulus

Using Eqns. (4.76), (4.80), and (4.81), the upper bound on the effec-

tive bulk modulus is given by

S O €/ 7.

- 1
where K, = ———————'J[Uij 1AV oo oo s L. (4.83)
<g >2V

To evaluate Eqn. (4.83) an admissible form of the infinitesimal strain
teasor, €j;, ls required for all phases of the composite material.

The infinitesimal stress tensor, Tij for phase k is given by

R S : (4.84)
17 = : :i- - ;’,KK ‘l e e e e s . .
] (l+)k) ] (l+vk)(l 2)k) ]

where Ex = the elastic modulus of phase k

Yy = Poisson's ratino for phase k.

A lower bound on the effective bulx modulus, E, may be found by

Ca N ; LAY OR) 00 t‘ .\
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s

i considering the case when the composite material is subjected to a

.
L]

hydrostatic stress state. The surface tractions for such a case are

.
o 4

|
. .
. glven by
1
s [ &
¢ <JKK>
RS Ti=—3———ni....................(4.85)
‘S
§ <-’
!
\ where T; = the components of the surface stress vector
% .
b N; = outward normal to the surface
f
Y <JKK> = trace of the volume averaged stress tensor.
N
-4
\' ?
L . . .
0 - The surface tractions given by Eqn. (4.85) result in a constant stress
¢
K v field throughout the composite material. The volume averaged stress
b
Kk
- tensor is given by
[\
g “Ikk”
K o,.> = ci e e e e e e e e e e e e e e e e . (4.86)
E .. ij 3 ij
q L
L r- Considering the composite to be an isotropic, linearly elastic mater-
A »
b
$ et - . . .
\ tal, then the volume averaged strain tensor 1s glven by
)
KK .
ey = == 3., . ... (48D
& ] 9K
\-::
1 - .
> where K = the effective bulk modulus
i
{
L)
‘ Y
K ;E Using Eqns. (4.76, (4.86), and (4.87), the lower bound on the effective
t
. bulk modulus is given by
s
.
Q hat )
¥ - K s
t-‘ K_KL
{ &
§ ,
2
: - “oxg” VY
: J where KL = 9 5 £ d4v A . . A (4.88)
v ij "ij
L)
» FA S v
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In order to evaluate Eqn. (4.88) an admissible form of the infinites-
imal stress tensor must be known for each phase contained in the com-
posite material. The infinitesimal strain tensor,

$ij for phase k

is then given by

(l+vk) Vi )

iij='—Ek—0ij—§OKKoij.............. (4.89)

)
=
m
o
™
g
1

the elastic modulus of phase x

<
[}

Ui Poisson's ratio for phase k.

To summarize, bounds on the effective bulk modulus, K, are given by

R SCRECKG « v v e e e e e e e e e e e e e s (490)

In Eqn. (4.90), RL is given by Eqn.(4.88) and Eu is given by Eqn.

—
N
o
)
—
.

4.3.2 Upper and Lower Bounds on the Effective Bulk

Modulus of an Idealized Solid-Fluid System

The general form of the upper and lower bounds on the effective
bulk modulus have been determined in Section 4.3.1. In order to evalu-
ate the expressions for the upper and lower bounds the phase geometry
and phase material properties must be specified. The remainder of this
section will be concerned with evaluating the expressions for the upper

and lower bounds for an idealized solid-fluid system.

. . - N . .
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o l}_ The idealized solid-fluid system to be considered is composed of
5 . spheres arranged in ideal packing configurations and surrounded by a

f &! £luid phase. The spheres in this assemble will all have the same

k :i material properties and will be of equal radii. The results for a

[N

} - sphere subjected to axisymatric surface displacements or surface trac~

2y
o

-

tions, determined in Chapter 3 will be employed to determine the

bounds on the effective bulk modulus. Use of these solutions requires

R -
} < the following assumptions concerning the contacts between adjacent
A
K, ,3 spheres.
1N
4 l. The contacts on a particular sphere occur in pairs with each
‘ ;“ - - . . .
133 contact directed along an axls which passes through the origin
¢
r- . of the sphere.
N
> 2. The sphere is in static equilibrium with negligible body
A
X n' forces.
i
. 3. No non-axisymetric surface tractions or displacements, occur
, "‘:-;
+ I on the region of contact between two adjacent spheres.
.
4
The first of these assumptions is satisfied automatically by coansider-
i lng only spheres in ideal packing configurations. The geometry for a
X
o . c . . . . . .
-, pair ol contacts 1s shown in Fig. 4.4. The third assumption is reason-
\ able since the bounds on the effective bulk modulus are determined for
N the cases of the representative volume element undergoing either a uni-
¥
: ;; form strain state or a hydrostatic stress state. For the case of the
.8 ‘~
( representative volume element subjected to a state of uniform strain,
4 :'.\ . . . . . =
S Eqn. (4.33) gives the following approximation for the displacement, u,
- occurring at the center of a contact between adjacent spheres contained
\' (!
% L in the system.
.
o
) f:
y
Jd
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7

>
P 3
[=1]
[}
o
=

T R

where R = the radius the spheres in the solid-fluid system
"~ <€kk = the trace of the volume averaged strain tensor.
o
o For the case of the representative volume element subjected to a state

of hydrostatic stress, Eqns. (4.52 and (4.53) give the following

o
N approximation for the force transmitted through a contact between adja-
[ o cent spheres contained in the system.
X &2
'
: :"‘\ <Ckk>
. ,Q F o= —— Ay . . .o . .. (4.92)
® s
SR
SN , .
Y where Ap = the area which transmits the stress normal to the
‘ m contact region through the contact.
; <ch> = the trace of the volume averaged stress tensor.
7 ¢
I' The area, A, appearing in Egn. (4.92) will depend on the packing
p rh" . . . . - . .
configuration and the orientation of the particular contact with
Ly
W . .
}: respect to the global coordinate system for the representative volume
element. To simplify the determination of the bounds on the effective
A bulk modulus it will be assumed that the force acting on all contacts
r . in the system will be of one magnitude. The magnitude of this force is
4 '.1‘ .
given by
VI
) :":
g
: ' <(jkk>
, _kk® -
o F = 3 S KD
al Y\
-

>

=3

N AT

" '.'o"' .:) -"'nl A . e A




s

where Ap = an average area which transmits the stress normal
to the contact reglon through the contact.

The approximations to the displacement at the center of a contact

d the force transmitted through a contact, ziven by Eqn. (4.91) and
an

fqn. (4.93), respectively, will be used to determine the bounds on the

offective bulk modulus.

To determine the bounds on the effective bulk modulus the integral
appearing in Eqn. (4.83) and Eqn. (4.88) must be determined. The
integral appearing in Eqn. (4.83) is used to determine the upper bound,
on the effective bulk modulus. This integral must be determined for
the case when the displacements are specified on the surface of the
representative volume elements. The displacements being specified on
the surface of the representative volume alement are given by Eqn.
(4.79). The integral appearing in Eqn. (4.88) is used to determine the
lower bound on the effective bulk modulus. This integral must be
determined for the case when the stresses are specified on the surface
of the reprasentative volume element. The surface tractions to be
specified are given by Eqn. (4.86). The integral to be determined can

be written as

7..e,, dV = J,, ¢,, dv + g, .. dv . . . (4.94)
ij71j 1] 1] 13 1)
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G
- .
- where V = total volume of the representative sample
.,
. Vg = volume of the solid phase
Vg = volume of the liquid phase

:: Jij = infinitesimal stress tensor

sij = intinitesimal strain tensor
n”
o The superscripts, s and f, appearing in Eqn. (4.94) are used to denote
v
" quantities for the solid and fluid phases, respectivelv. From the
~ . . ) L )
. results of Section 4.3.1, the integral taken over the fluid phase 1is
"y

given by

T

t - ,
:_: :L_]Ll_] dv:’vuef VE. e s e e s 8 e e e e s . (4.95)
- v
ii £
. Wwhere eg = the volumetric strain of the fluid phase
“ 7, = the fluid pressure

when the fluid pressure, :,, is known, the volumetric strain of the

. fluid phase, eg, is determined by

ef = —

s where P

K¢ =

K e T Y

pressure

the bulk modulus of the fluid phase
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The fluid pressure, Eu, appearing in Eqn. (4.95) and Egn. (4.96) 1is
taken to be negative for gauge pressures, P, zreater than zero.

The solid phase of the representative volume element will be
comprised of a number of spheres in contact. The spheres in the system
bill be subjected to loads resulting from contacts with adjacent
spheres as well as from the fluid pressure. Using the principle of
superposition, the integral taken over the solid phase which appears in

Eqn. (4.97) is written as

In Eqn. (4.97), the superscripts ¢ and p are used to denote the stress
and strain fields occurring withia a sphere, which result from contacts
with adjacent spheres and the fluid pressure, respectively. The
results for a sphere subjected to a uniform radial pressurz are given

in Section 3.4.3. Using this sclution, J:° and :Pare given

1) 1]

as

- P _ = . /

Jij“Ju“LJ"------------------(*-98)

p 1 = N

=, . = S T

i ] TK u “ij (4.99)

S

where y = the fluid pressure

Kg = the bulk modulus of the solid phase

Uij = Kronecker delta
P AT A A TR T T T T T T e O i o T T A R N
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- Substitution of Eqns. (4.98) and (4.99) into Eqn. (4.94) vields

" .

'\
%
\ !I 5

o ’ .5 €35 4V = 5. ¢, dV + —4— J]CdV

N ij " ij 1j "1ij 3K kk
[} \$' ~ S
‘N v v v
, 0 S S S

\ . 2
- 1 v o (g)
~h§ Y, + 73 £ Qv + u . (4.100)
A& u kk K
\ -} s
‘.\.‘ e
\'hg B v
o a s
M -
v
‘ .
o c . . . .

ot The terms Tkk and S are lnvariant with respect to coordinate systems.

RIS
el
iiﬂ Because of this the integrals contalning these terms may be performed
/"A< ‘_;:
L. > without transforming the solutions for the stress and strain fizlds due
o

LIRS to a particular contact into one global coordinate system. The inte-
B " V.

o et
X gral contailning these terms were determined in Section 4.2.1. The

values of these integrals are gilven by

..
g}
w

iy
NI
:{{ _\ .
», -~ Z dv = 3 +u N L \
o Kk (1+v ) C_ M b_, V T S R D
1
Bmov 7 S
U |
oo c 3(1—2‘JH)CS M b SV
A = > —< (4.102
’:‘ Lo Ekk dv 2 G e e e e (4 loh)
i ad] -
‘:! Iy v
IR s
J% i& where M = the number of contacts between a particular
f

sphere and adjacent spheres

3

L&
(@)

w o . s = the volume fractinn of the solids contained
ST in th t
el e system
. t-
1) Gg = the shear modulus of the solid phase
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Following the above approach would yield for energy functionals

u u ,
UC Uc (M, Bm' wm, 9, Vs) (4f?03)
where M = the number of contacts on a particular sphere
Bm,wm = the angles defining the position of contact m with respect

to a global coordinate system

©
[}

the angle defining the region of contact on a sphere

v = Poisson's ratio for the sphere

For spheres arranged in a particular ideal packing configuration, the number

of contacts on a particular sphere, N, and the angles Sm and Yy are known.

Therefore for a particular ideal packing configuration, the quantities, Ug and
UZ, may be presented as a family of curves for different values of ¢' and st
The expressions for the upper and lower bounds on the effective bulk

modulus, i, may now be determined. The upper bound on the effective bulk
modulus, Ru’ is determined for the case when the displacements are specified
on the representative volume element. Combining Eqns. (4.41), (4.83), 4.94),
4.95), (4.100), (4.101), and (4.102)

gives the

e
[

=1
L}

(4.104)

<
el
=

The values of K? and K; are given by
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- u u
Kl =4(1+\)s) Cs Ou 3K5M€,° + 20u

- 2 Kgef + 8(l+vy) K g ef

+ 3(1-2vg) C4 Kg U, (4.105)

Ky = 8(1kevg) Cg <ep >’ (4.106)

The lower bound on the effective bulk modulus, KL’ is determined from the case
when the surface tractions are specified on the representative volume.
Combining Eqs. (4.62), (4.88), (4.94), (4.95), (4.100), (4.101), and (4.102)

gives the following for KL’

- ~1L
KL s — (4.107)
KZL
al 5l .
The values of K and KZ are given by
L
R, = 12 (1-vgD)? <ol (4.108)
- L )
Ky =
2 9 T(l-vg™) 5 49y [6 (1-2vg) M Eg
™ 4 2
vOTVE) Gy - T (1-Vg ) ef (4.109)

+ 24 (I—sz) (1+Vs) Cs Ksz Uco
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2 T

h

&

v

i N _
a R In summary, the upper and lower bounds of the effective bulk modulus, K,
0 §§

k‘ of the idealized solid=fluid system under consideration are given by

o R -sRsR

3 E s .

\:‘ L s u (‘4110)

e e -
- . .
1
]

The quantities, K  and ku’ are determined from Eqns. (4.101 to 4.106). The

L

expressions for the upper and lower bounds show that the voids in the system

have an effect on the effective bulk modulus when the fluid pressure is

S

atmospheric. This was not the case for the effective bulk modulus determined

from the volumetric averaging approach.

o Sy,

4,4 Effective Poisson's Ratio

Y-
A -

In this section an effective Poisson's ratio, 3, will be determined for

oss

the idealized solidmfluid system. This effective Poisson's ratio will be

!5 determined through the definition of this quantity. Poisson's ratio is
q' N
g: defined as the negative of the ratio of lateral strain to longitudinal strain
D

i
2” t} for a sample loaded along the longitudinal axis. Fig. 4.5 shows a sample
) ‘“} . . .
b,

undergoing uniaxial loading along the z axis. The dotted line shows the

ﬁ: §§ deformed shape of the sample due to the applied load. For the sample shown in
o
)
gi e Fig. 4.5, Poisson's ratio is determined as
i it |
¢ b /L
::. > Vv = —u_x (u 111)
W g* 2 /L .
P N x Tx o
o
3
RS where v = Poisson's ratio

L
”
’:0 ai
h: he The effective Poisson's ratio for the solid-fluid system can be determined in
L :
o
\‘. (13
q
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oe X

the same manner as that given by Eqn. (4.111). The idealized solid-fluid

system consists of a number of equal spheres arranged in ideal packing

& |

configurations. These spheres are surrounded by a fluid phase. The following

4 40

v
»

assumptions are required in order to allow the determination of the effective
Poisson's ratio,

1. The spheres in the system do not experience any rigid body motion.

= =8

2. Only normal forces are transmitted through contacts between adjacent

spheres.

“

ool

3. The fluid pressure in the system is at steady state conditions.

The first assumption is necessary so that the geometry of the spheres in the

T2

system remains known. The second assumption allows the use of the results

5

¥ ¢
LRSI

given in Chapter 3 in determining the effective Poisson's ratio. The reason
for the last assumption will be expla{Zned presently.

To determine the effective Poisson's ratio, the idealized solid~fluid
ﬁ? system will be loaded in one direction only as shown in Fig. 4.6. The system

may initially be stressed due to body forces. The effective Poisson's ratio

!! will be determined from the displacements occurring in the system when the

3 system is disturbed from its initial state. The addition of the stress, Aczz,
ey o

r

U'(lf

as shown in Fig. 4.6 may cause an increase in the fluid pressure as well as

2 the stresses present in the spheres making up the solid phase. The effective

A Poisson's ratio of the system may be determined for the case when the fluid

& pressure has dissipated to its initial value (steady state condition). For

:i' this condition the additional stress, Auzz, will be transferred to the solid

ke phase and the effective Poisson's ratio may be determined by only considering

E& this phase, If non-steady state condigions were considered, a sample of the
material from within the system would be subjected to multimaxial ;tresses in

§, reference to its initial state. Thus, the definition of Poisson's ratio could

-

L
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not be used to determine the effective Poisson's ratio. For steady state
conditions, the change in stress on the system will be one directional and the
definition of Poisson's ratio may be used to determine the effective Poisson's
ratio. Under the loading shown in Fig. 4.6, the two planes, A=A and A'-=A',
Wwill approach each other by some amount, while the two planes, B~B and B'-=B',
will move away from each other by some amount. These displacements may be
determined from the results given in Chapter 3. From these displacements the
effective Poisson's ratio may be determined, The change in the displacement

vector at any point, (x, y, 2), in the sphere, due to the addition load is

given by

¥?

z T T
.F A1
bl <) I 7] [rle[{u }m- : }]
m=1 (4.112)
(x,er) C

where M° = the number of contacts transmitting force

m = the contact of interest

In Eqn. (4.112), the superscripts F and I denote final and initial values of
the displacement vector, in reference to a local spherical coordinate system,
reSpectivelyf The symbol, A, appearing in this equation is used to denote the
change in the displacement vector. The transtermation matrices, [TG] and
[TL], are given by Eqns. (3.?40) and (3f1u1), respectivelyf The displ:?cement

vector, {au}, in reference to the global coordinate System is given by

Au, (uf?13)

]
',
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The Egqn. (4.112) may be evaluated at contacts contained on the planes, AnA and
A'—=A', to determ{:ne the strain occurring between these planes. This strain

is given by

Auz CO

€2z T R cossc (u'1?“)

¢ . .
where C” = a contact which transmits force.

BC = an angle defining the position of a contact transmitting

force to the efhéf‘ef




CHAPTER 5

EFFECTIVE MODULI OF AN IDEALIZED 3=PHASE SYSTEM

5.1 Introduction B

In the previous chapter effective moduli for an idealized soil-water
system was derived, This model may be applicable for a fully saturated
system. In a partially saturated system where soil, water and air are in
contact, previeusly derived moduli cannot be used. The compressible nature of

the gaseous phase plays an important role. In this chapter an attempt is made

TR ORR X N S R Y5 OBS

to arrive at an effective moduli for the soil=watermair 3—-phase system under

23

idealized conditions. The approach used by Chang & Duncan (1974) is used in

. arriving at a compressibility parameter for this air-water system.
In this chapter, in the development of the effective moduli for a 3=phase

system it i3 also assumed that the effective stress variation in a partially

saturated granular voia, changes with the degree of saturation.

5.2 The compressibility of the homogenized pore fluid of partially saturated

301l

The compressibility of the homogenzied pore fiuid 1/Kp is defined as the

volumetric strain induced by a unit change in pore fluid pressure. It can-be

T KR R =S R PR W=

, defined by the following equation

Y

)

w

L]

? . d e

wilt K ""do 5.1
(' é P p

' 25 where ep = volumetric strain of pore fluid
» -
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[
v 8%

op = pore fluid pressure

The homogenized pore fluid pressure can be expressed as a function of air

pressure, water pressure and surface tension. It may be expressed

5.2

.’

where g

[}

air pressure in the pore
water pressure

T = surface tension

zQ
L]

The compressibility of tne homogenized pore fluid, therefore, can be evaluated

using the following eq.

B 22X

L (af 30 ) b B9, B 3T,
, p -7 '3, "3 ' Do, " e T " B 5.3
! a P W P c P :

4
¥
Ay
)
a. ﬂ
0 If the form of Equation 5.3 is known, the compressibility of the
homogenized pore fluid can be evaluated by knowing the changes in air

pressure, water pressure, and tension due to unit change in volumetric strain.

s For the case in which the air bubbles are occluded, Eq. 5.3 reduced to:

5 &i . i

S ' 3¢

:E 3; K == ’aT: 5.4

:

j; ; For this important practical case, the compressibility of the homogenized pore
:g :) fluid can be evaluated using Boyle's law and Henry's law. This darivation is
. ,

3: P given in the following section.

N

- e
A5

.--
4 .

Note that for clays with low degrees of saturation, open channels are likely

e
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to be present. The behavior in such a case is extremely complicated. The

approach here considers only granular soils.

5.3 Derivation of compressibility expression:

This derivation is based on Boyle's law and Henry's law.

Boyle's Law
Boyle's Law states that the product of pressure and volume of a gas is

constant under constant temperature conditions:

Henry's Law
Henry's Law states that at a constant temperature, the weight of gas
which can be dissolved in a given volume of liquid is directly

proportional to the gas pressure.

Let Vd be the volume that would be occupied by the dissolved gas if
1t was extracted from the liquid and compressed to the pressure acting on the
fluid. According to Boyle's and Henry's Laws this volume will be constant and
tnus independent of the pressure. V, is only dependent on the volume of water

d

and can be calculated as follows:

where Vw is the volume of water, H is the coefficient of solubility. At 20°C,

H = 0.02.

According to Dalton's division law, the saturated water vapor pressure in

B ) "l R Q) )
G ‘A'. u'. l'.‘l' 'l'. % 1'1'!. v 0.".'"'." 4‘.‘." “‘o e '.'O.g"’o‘,'t....'»..' 't a‘i.n ey .' " ‘.' '. ¢ '.0 ‘.0“.0"0. o"‘ l' 't‘ L
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the free air does not obey Boyle's Law. However, the saturated water vapor
pressure 1s usualliy very small (Schuurman, 1966) and the influence can be

disregarded.

According to Henry's Law, the volume of air dissolved in the water 1is
proportional to the volume of water. The rate at which the air dissclves in
the water depends on the air pressure. The time t necessary to dissolve the

air for a unit change in pressure was shown by Beek (1963) to be

ct
[]
Ul"!
o) N

5.6

where Df is the diffusion coefficient and r is the radius of the bubble. At
20°C, Df is equal to 10ﬁ5 cma/sec. For small air bubbles, the time necessary
to dissolve the air is very small. Therefore, it can be assumed that the air

dissolves in the water instantaneously and that the water is always saturated

with dissolved air.

As a result of the surface tension, Tc’ the air pressure and the water
pressure of an air=water mixture are not the same. The value of o, and o, are

related by
6 =0_ 090 5.7

where 9, is the capillary pressure due to surface tension. o, is usually

expressed in terms of the meniscus radii, r rz, «J shown in Fig. 5.1.

1’
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In a mixture of air and water, the bubbles do not necessarily all have the

same shape and size. Therefore, it is assumed that:

5.9

where Rc is the average capillary radius for the mixture of air and water.

Generally, for soils with high degrees of saturation, the effect of 0o is

small.

If ea is the volume of free air and es is the volume of dissolved air in

the air—water mixture, then it follows from Boyle's and Henry's Law that

(ea * eS) (pa * oa) B (eao * eS) (pa * Uao) | 5??0

where Py is atmospheric pressure, €0 is the initial air volume and %40 is the

initial air gauge pressure. Equation 5.10 can also be expressed as:

e n e )P+ (e + e _)o
( a0 a) a ( ao a) ao

= 5.1
a 3 )

Using expressions 5.7 and 5.11, the pore water pressure may be expressed as:

(eao i ea)pa * (eao - es)oao e
W e+ e 7R 5.12
a s =

The compressibility of the airmwater mixture 1is,

LN
RENOMNE RN
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B de d

o g 1 P 1 ea

2y — - = = = — 5.13

X Kp da (?*’eo) do "

where eo 13 the initial volds ratio.

i :
-,
[
Q
a

': (e. +e )P+ (e + e )o 2T  de

A _ _ao s’ a ao s_ a0 _c¢ c 14
. de_ =~ (e + o2 g 2 de_ 5.1
i:' % a s c

0

::é: g In terms of degree of saturation S and void ratio e

Al

'ire
o

=%

) do,, (eo soeo+HSoeo) (uao* Pa)

b." de = 2 +

::.: ! a (e = Se + HSe)

A 5.15
LX)

) R 2 dS e

: c

0

f ) .
3
_Fﬁ s Substituting Eq. 5.13 into Eq. 5.15, the compressibility of the homogenized
e E pore fliiid can be expressed as:

o 1

t —_—

!;:t - (T+e )

R E;' 1 .o 5.16
() = —% L.
,‘:ﬁ, Kp (eo soeo+HSoeo(aao+Pa) @2t dRc S

M, e

B} & (e:Se+HSe)2 Rc2 as e

g

r)

::l: - where Kp = Bulk modulus of the airrwater moisture

0.0. &

)
::g‘ ¢ e, = initial voids ratio

@

R a So = initial degree of saturation

‘.. Y
:‘:' e = voids rat.o

A
"y @ S = degree of saturation

Q.

;: N H = Coeff. of solubility
i 5 Tc = Surface tersion
o
’7’ é R, = Average capillary radius )
o - it i

:.:. %0 initial gage air pressure

‘:“ '3:
e
e
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rll
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If the surface tension term in Eq. 16 is neglected, the equation reduces

¢ to a form similar to that suggested by Hilf (1948) and Skempton and Bishop

S
"+

i:'. b (1954). The comparison between test data obtained by Mitchell et al., (1965)
l' .

o .

) and the results predicted by Hilf's and Skempton and Bishop's equation is

Dy

DN » shown in Fig. 5.2.

...
Pl

-
b 45

Schuurman (1966) took surface tension into account by assuming that the

o‘.o '.:‘
=

air bubbles were all of equal size and spherical in shape. By this

assumption, the value of Rc in Eq. 5.9 would be equal to the radius of the air

VA

o bubbles, Taking the initial radius of air bubbles as Ro, the radius after a
vl '
' n}; cnange in void ratio can be expressed as
&\
by
[
‘“ e 1/3
g5 R, = Ry (5
\ J c o ‘e
X ao
! .
;' {\‘; By substituting this expression into Eq. 5.15, the compressibility of this
-' At .
i )
f‘e air-water mixture can be calculated. A comparison between test data obtained
::: !‘ by Mitchell et al. (1965) and the results predicted by Schuurman's equation is
. -
o
()
L &5 shown in Fig. 5.2.
‘ .
M)
“:9 ']
@
" I
.,',:‘ :-_: It seems likely that the discrepancies between experimental data and the
[ AN > .
%)
: - results predicted by Hilf's and Skempton and Bishop's equation are mainly due
D e .
AN
‘ & to the negligenece of the effect of surface tension. The discrepancies
.'
;0" {5 between the experimental data and the results predicted by Schuurman's
’.0 h':
::' equation are probably due to the assumption that all the bubbles are spherical

and uniform, and that the total number of bubbles does not change during the

<

- compression of the soil,
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A further consideration relative to surface tension effects is that the

T - -

caplllary pressure does not necessarily arise only from the bubbles, It can

.

also arise from the other water surfaces exposed to air at the specimen

v,

boundaries. Therefore, it seems more reasonable to use an empirically

- -
»
»

determined average capillary radius Rc to simulate capillary effects.

it has been found that the calculated results agree quite well with the

2w s e .-

s =3

~

test by Mitchell et al. (1965) if it is assumed that the average capillary

233

radius Rc and the degree of saturation are related as follows:

PO R R

==Y

S-S

' - (30
" c es \1 - S¢ 5.19

e '

e

where Rcs is the capillary radius at saturation. The comparison is shown in

»r .
’ !ﬁ Fig., 5.3. Sf is the lowest degree of saturation at which the water begins to
‘S flow freely. Sf may be found from permeability tests for samples with
i N’
1' 4
" 4 different degrees of saturation. For the clay tested by Mitchell, et al., Sf

!! was found to be zero. It was also found that the relation between the water
?
A pressure and the degree of saturation was approximated best by adopting a
H s
: ﬁg value of 2TC/Rcs = 5 psi. At 20°C, the value of Tc is 74 x 10”6 kg/cm. The
‘ - .

i 2 = i

g value of ,.TC/Rcs 5 ps1 corresponds to an effective value of Rcs equal to

4.23 x 107 cm.

; 5.4 Effective Bulk modulus of a 3—phase system.
VIR

X
R
$ v Previously an expression was derived for the effective bulk modulus of a
&
. saturateda 2-phase soil-water system. The bulk modulus expression in Eqn. 4.66
) .
)
: FR 18 further modified here for a 3=phase soil=water~air system in light of the
¢
:
K -
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compressibility expression for a watermair mixture derived before. !

In Eq. 4.66 the parameters affected by the degree of saturation are Cps

B

a
ou, er and Eof

Assuming that the pore pressure in partially saturated systems is directly

related to the degree of saturation via X ,where X is an empirical parameter

B 28

given in Fig. 5.4 in the relation

LI - - d

a a d; + X (d - u) 5.?8
!E;
"~ *
:? The volumetric strain for a partially saturated system, ep, can be determined

from the following expression
sy
)
'.'s
e *
g

* u

e, = — 5.19
n r K
Y p
8 2 where Kp = Bulk modulus of the air-water mixture.
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CHAPTER 6
CONCLUSIONS AND RECOMMENDATIONS

From this investigation, the following conclusions can be drawn:

1. The modelling of even saturated systems using the micromechanics approaches
is quite complicated, and the degree of complexity is far greater with such

approaches for partly saturated systems,

2. Numerous assumptions need to be made in order to arrive at the stresss
strain response of partly saturated systems using the micromechanics=based
models. However, one could obtain some insight into the fundamental behavior

of parfly saturated systems in this methodology.

3. The expressions developed for effective moduli, and the procedure outlined
for poisson's ratio should be valuable in modelling behavior of partly

saturated systems.

4, Although the immediate usefulness of this type of modelling approach may
not be that evident, the long term potential for improving the understanding

of the behavior of partly saturated soils is great.

The recommendations for futher research include the possible elimination of
some of the assumptions based on experimental data, and validation of
predictions by the newly developed models on various partly saturated systems
using results from controlled experiments. Another useful further research
effort would be to extend this work for timeﬂdependent behavior and strainn

rate dependent behavior.
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